Metamath Proof Explorer


Theorem r19.3rzv

Description: Restricted quantification of wff not containing quantified variable. (Contributed by NM, 10-Mar-1997)

Ref Expression
Assertion r19.3rzv ( 𝐴 ≠ ∅ → ( 𝜑 ↔ ∀ 𝑥𝐴 𝜑 ) )

Proof

Step Hyp Ref Expression
1 nfv 𝑥 𝜑
2 1 r19.3rz ( 𝐴 ≠ ∅ → ( 𝜑 ↔ ∀ 𝑥𝐴 𝜑 ) )