Metamath Proof Explorer


Theorem r19.41

Description: Restricted quantifier version of 19.41 . See r19.41v for a version with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 1-Nov-2010)

Ref Expression
Hypothesis r19.41.1 𝑥 𝜓
Assertion r19.41 ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝐴 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 r19.41.1 𝑥 𝜓
2 anass ( ( ( 𝑥𝐴𝜑 ) ∧ 𝜓 ) ↔ ( 𝑥𝐴 ∧ ( 𝜑𝜓 ) ) )
3 2 exbii ( ∃ 𝑥 ( ( 𝑥𝐴𝜑 ) ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝑥𝐴 ∧ ( 𝜑𝜓 ) ) )
4 1 19.41 ( ∃ 𝑥 ( ( 𝑥𝐴𝜑 ) ∧ 𝜓 ) ↔ ( ∃ 𝑥 ( 𝑥𝐴𝜑 ) ∧ 𝜓 ) )
5 3 4 bitr3i ( ∃ 𝑥 ( 𝑥𝐴 ∧ ( 𝜑𝜓 ) ) ↔ ( ∃ 𝑥 ( 𝑥𝐴𝜑 ) ∧ 𝜓 ) )
6 df-rex ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ∃ 𝑥 ( 𝑥𝐴 ∧ ( 𝜑𝜓 ) ) )
7 df-rex ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )
8 7 anbi1i ( ( ∃ 𝑥𝐴 𝜑𝜓 ) ↔ ( ∃ 𝑥 ( 𝑥𝐴𝜑 ) ∧ 𝜓 ) )
9 5 6 8 3bitr4i ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝐴 𝜑𝜓 ) )