Metamath Proof Explorer


Theorem r19.44v

Description: One direction of a restricted quantifier version of 19.44 . The other direction holds when A is nonempty, see r19.44zv . (Contributed by NM, 2-Apr-2004)

Ref Expression
Assertion r19.44v ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∃ 𝑥𝐴 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 r19.43 ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝐴 𝜑 ∨ ∃ 𝑥𝐴 𝜓 ) )
2 id ( 𝜓𝜓 )
3 2 rexlimivw ( ∃ 𝑥𝐴 𝜓𝜓 )
4 3 orim2i ( ( ∃ 𝑥𝐴 𝜑 ∨ ∃ 𝑥𝐴 𝜓 ) → ( ∃ 𝑥𝐴 𝜑𝜓 ) )
5 1 4 sylbi ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∃ 𝑥𝐴 𝜑𝜓 ) )