Metamath Proof Explorer


Theorem r19.45zv

Description: Restricted version of Theorem 19.45 of Margaris p. 90. (Contributed by NM, 27-May-1998)

Ref Expression
Assertion r19.45zv ( 𝐴 ≠ ∅ → ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( 𝜑 ∨ ∃ 𝑥𝐴 𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 r19.43 ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝐴 𝜑 ∨ ∃ 𝑥𝐴 𝜓 ) )
2 r19.9rzv ( 𝐴 ≠ ∅ → ( 𝜑 ↔ ∃ 𝑥𝐴 𝜑 ) )
3 2 orbi1d ( 𝐴 ≠ ∅ → ( ( 𝜑 ∨ ∃ 𝑥𝐴 𝜓 ) ↔ ( ∃ 𝑥𝐴 𝜑 ∨ ∃ 𝑥𝐴 𝜓 ) ) )
4 1 3 bitr4id ( 𝐴 ≠ ∅ → ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( 𝜑 ∨ ∃ 𝑥𝐴 𝜓 ) ) )