Description: Restricted quantification of wff not containing quantified variable. (Contributed by NM, 27-May-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | r19.9rzv | ⊢ ( 𝐴 ≠ ∅ → ( 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrex2 | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ) | |
2 | r19.3rzv | ⊢ ( 𝐴 ≠ ∅ → ( ¬ 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ) ) | |
3 | 2 | con1bid | ⊢ ( 𝐴 ≠ ∅ → ( ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ 𝜑 ) ) |
4 | 1 3 | bitr2id | ⊢ ( 𝐴 ≠ ∅ → ( 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |