Step |
Hyp |
Ref |
Expression |
1 |
|
r1funlim |
⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) |
2 |
1
|
simpri |
⊢ Lim dom 𝑅1 |
3 |
|
limord |
⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) |
4 |
|
ordsson |
⊢ ( Ord dom 𝑅1 → dom 𝑅1 ⊆ On ) |
5 |
2 3 4
|
mp2b |
⊢ dom 𝑅1 ⊆ On |
6 |
|
elfvdm |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐵 ∈ dom 𝑅1 ) |
7 |
5 6
|
sselid |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐵 ∈ On ) |
8 |
|
r1tr |
⊢ Tr ( 𝑅1 ‘ 𝐵 ) |
9 |
|
trss |
⊢ ( Tr ( 𝑅1 ‘ 𝐵 ) → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) ) |
10 |
8 9
|
ax-mp |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) |
11 |
|
elpwg |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝐵 ) ↔ 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) ) |
12 |
10 11
|
mpbird |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝐵 ) ) |
13 |
|
r1sucg |
⊢ ( 𝐵 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝐵 ) = 𝒫 ( 𝑅1 ‘ 𝐵 ) ) |
14 |
6 13
|
syl |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( 𝑅1 ‘ suc 𝐵 ) = 𝒫 ( 𝑅1 ‘ 𝐵 ) ) |
15 |
12 14
|
eleqtrrd |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) |
16 |
|
suceq |
⊢ ( 𝑥 = 𝐵 → suc 𝑥 = suc 𝐵 ) |
17 |
16
|
fveq2d |
⊢ ( 𝑥 = 𝐵 → ( 𝑅1 ‘ suc 𝑥 ) = ( 𝑅1 ‘ suc 𝐵 ) ) |
18 |
17
|
eleq2d |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ↔ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) |
19 |
18
|
rspcev |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) |
20 |
7 15 19
|
syl2anc |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) |
21 |
|
rankwflemb |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) |
22 |
20 21
|
sylibr |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |