| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝑛  =  ∅  →  ( 𝑅1 ‘ 𝑛 )  =  ( 𝑅1 ‘ ∅ ) ) | 
						
							| 2 | 1 | eleq1d | ⊢ ( 𝑛  =  ∅  →  ( ( 𝑅1 ‘ 𝑛 )  ∈  Fin  ↔  ( 𝑅1 ‘ ∅ )  ∈  Fin ) ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑅1 ‘ 𝑛 )  =  ( 𝑅1 ‘ 𝑚 ) ) | 
						
							| 4 | 3 | eleq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑅1 ‘ 𝑛 )  ∈  Fin  ↔  ( 𝑅1 ‘ 𝑚 )  ∈  Fin ) ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑛  =  suc  𝑚  →  ( 𝑅1 ‘ 𝑛 )  =  ( 𝑅1 ‘ suc  𝑚 ) ) | 
						
							| 6 | 5 | eleq1d | ⊢ ( 𝑛  =  suc  𝑚  →  ( ( 𝑅1 ‘ 𝑛 )  ∈  Fin  ↔  ( 𝑅1 ‘ suc  𝑚 )  ∈  Fin ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑛  =  𝐴  →  ( 𝑅1 ‘ 𝑛 )  =  ( 𝑅1 ‘ 𝐴 ) ) | 
						
							| 8 | 7 | eleq1d | ⊢ ( 𝑛  =  𝐴  →  ( ( 𝑅1 ‘ 𝑛 )  ∈  Fin  ↔  ( 𝑅1 ‘ 𝐴 )  ∈  Fin ) ) | 
						
							| 9 |  | r10 | ⊢ ( 𝑅1 ‘ ∅ )  =  ∅ | 
						
							| 10 |  | 0fi | ⊢ ∅  ∈  Fin | 
						
							| 11 | 9 10 | eqeltri | ⊢ ( 𝑅1 ‘ ∅ )  ∈  Fin | 
						
							| 12 |  | pwfi | ⊢ ( ( 𝑅1 ‘ 𝑚 )  ∈  Fin  ↔  𝒫  ( 𝑅1 ‘ 𝑚 )  ∈  Fin ) | 
						
							| 13 |  | r1funlim | ⊢ ( Fun  𝑅1  ∧  Lim  dom  𝑅1 ) | 
						
							| 14 | 13 | simpri | ⊢ Lim  dom  𝑅1 | 
						
							| 15 |  | limomss | ⊢ ( Lim  dom  𝑅1  →  ω  ⊆  dom  𝑅1 ) | 
						
							| 16 | 14 15 | ax-mp | ⊢ ω  ⊆  dom  𝑅1 | 
						
							| 17 | 16 | sseli | ⊢ ( 𝑚  ∈  ω  →  𝑚  ∈  dom  𝑅1 ) | 
						
							| 18 |  | r1sucg | ⊢ ( 𝑚  ∈  dom  𝑅1  →  ( 𝑅1 ‘ suc  𝑚 )  =  𝒫  ( 𝑅1 ‘ 𝑚 ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝑚  ∈  ω  →  ( 𝑅1 ‘ suc  𝑚 )  =  𝒫  ( 𝑅1 ‘ 𝑚 ) ) | 
						
							| 20 | 19 | eleq1d | ⊢ ( 𝑚  ∈  ω  →  ( ( 𝑅1 ‘ suc  𝑚 )  ∈  Fin  ↔  𝒫  ( 𝑅1 ‘ 𝑚 )  ∈  Fin ) ) | 
						
							| 21 | 12 20 | bitr4id | ⊢ ( 𝑚  ∈  ω  →  ( ( 𝑅1 ‘ 𝑚 )  ∈  Fin  ↔  ( 𝑅1 ‘ suc  𝑚 )  ∈  Fin ) ) | 
						
							| 22 | 21 | biimpd | ⊢ ( 𝑚  ∈  ω  →  ( ( 𝑅1 ‘ 𝑚 )  ∈  Fin  →  ( 𝑅1 ‘ suc  𝑚 )  ∈  Fin ) ) | 
						
							| 23 | 2 4 6 8 11 22 | finds | ⊢ ( 𝐴  ∈  ω  →  ( 𝑅1 ‘ 𝐴 )  ∈  Fin ) |