Metamath Proof Explorer


Theorem r1lim

Description: Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of TakeutiZaring p. 76. (Contributed by NM, 4-Oct-2003) (Revised by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion r1lim ( ( 𝐴𝐵 ∧ Lim 𝐴 ) → ( 𝑅1𝐴 ) = 𝑥𝐴 ( 𝑅1𝑥 ) )

Proof

Step Hyp Ref Expression
1 limelon ( ( 𝐴𝐵 ∧ Lim 𝐴 ) → 𝐴 ∈ On )
2 r1fnon 𝑅1 Fn On
3 fndm ( 𝑅1 Fn On → dom 𝑅1 = On )
4 2 3 ax-mp dom 𝑅1 = On
5 1 4 eleqtrrdi ( ( 𝐴𝐵 ∧ Lim 𝐴 ) → 𝐴 ∈ dom 𝑅1 )
6 r1limg ( ( 𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴 ) → ( 𝑅1𝐴 ) = 𝑥𝐴 ( 𝑅1𝑥 ) )
7 5 6 sylancom ( ( 𝐴𝐵 ∧ Lim 𝐴 ) → ( 𝑅1𝐴 ) = 𝑥𝐴 ( 𝑅1𝑥 ) )