Description: Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of TakeutiZaring p. 76. (Contributed by NM, 4-Oct-2003) (Revised by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1lim | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ Lim 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limelon | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ Lim 𝐴 ) → 𝐴 ∈ On ) | |
| 2 | r1fnon | ⊢ 𝑅1 Fn On | |
| 3 | fndm | ⊢ ( 𝑅1 Fn On → dom 𝑅1 = On ) | |
| 4 | 2 3 | ax-mp | ⊢ dom 𝑅1 = On |
| 5 | 1 4 | eleqtrrdi | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ Lim 𝐴 ) → 𝐴 ∈ dom 𝑅1 ) |
| 6 | r1limg | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ) | |
| 7 | 5 6 | sylancom | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ Lim 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ) |