Metamath Proof Explorer


Theorem r1limg

Description: Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of TakeutiZaring p. 76. (Contributed by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion r1limg ( ( 𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴 ) → ( 𝑅1𝐴 ) = 𝑥𝐴 ( 𝑅1𝑥 ) )

Proof

Step Hyp Ref Expression
1 df-r1 𝑅1 = rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ )
2 1 dmeqi dom 𝑅1 = dom rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ )
3 2 eleq2i ( 𝐴 ∈ dom 𝑅1𝐴 ∈ dom rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) )
4 rdglimg ( ( 𝐴 ∈ dom rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) ∧ Lim 𝐴 ) → ( rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) ‘ 𝐴 ) = ( rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) “ 𝐴 ) )
5 3 4 sylanb ( ( 𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴 ) → ( rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) ‘ 𝐴 ) = ( rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) “ 𝐴 ) )
6 1 fveq1i ( 𝑅1𝐴 ) = ( rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) ‘ 𝐴 )
7 r1funlim ( Fun 𝑅1 ∧ Lim dom 𝑅1 )
8 7 simpli Fun 𝑅1
9 funiunfv ( Fun 𝑅1 𝑥𝐴 ( 𝑅1𝑥 ) = ( 𝑅1𝐴 ) )
10 8 9 ax-mp 𝑥𝐴 ( 𝑅1𝑥 ) = ( 𝑅1𝐴 )
11 1 imaeq1i ( 𝑅1𝐴 ) = ( rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) “ 𝐴 )
12 11 unieqi ( 𝑅1𝐴 ) = ( rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) “ 𝐴 )
13 10 12 eqtri 𝑥𝐴 ( 𝑅1𝑥 ) = ( rec ( ( 𝑦 ∈ V ↦ 𝒫 𝑦 ) , ∅ ) “ 𝐴 )
14 5 6 13 3eqtr4g ( ( 𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴 ) → ( 𝑅1𝐴 ) = 𝑥𝐴 ( 𝑅1𝑥 ) )