Metamath Proof Explorer


Theorem r1omtsk

Description: The set of hereditarily finite sets is a Tarski class. (The Tarski-Grothendieck Axiom is not needed for this theorem.) (Contributed by Mario Carneiro, 28-May-2013)

Ref Expression
Assertion r1omtsk ( 𝑅1 ‘ ω ) ∈ Tarski

Proof

Step Hyp Ref Expression
1 omina ω ∈ Inacc
2 inatsk ( ω ∈ Inacc → ( 𝑅1 ‘ ω ) ∈ Tarski )
3 1 2 ax-mp ( 𝑅1 ‘ ω ) ∈ Tarski