Metamath Proof Explorer


Theorem r1ord2

Description: Ordering relation for the cumulative hierarchy of sets. Part of Proposition 9.10(2) of TakeutiZaring p. 77. (Contributed by NM, 22-Sep-2003)

Ref Expression
Assertion r1ord2 ( 𝐵 ∈ On → ( 𝐴𝐵 → ( 𝑅1𝐴 ) ⊆ ( 𝑅1𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 r1tr Tr ( 𝑅1𝐵 )
2 r1ord ( 𝐵 ∈ On → ( 𝐴𝐵 → ( 𝑅1𝐴 ) ∈ ( 𝑅1𝐵 ) ) )
3 trss ( Tr ( 𝑅1𝐵 ) → ( ( 𝑅1𝐴 ) ∈ ( 𝑅1𝐵 ) → ( 𝑅1𝐴 ) ⊆ ( 𝑅1𝐵 ) ) )
4 1 2 3 mpsylsyld ( 𝐵 ∈ On → ( 𝐴𝐵 → ( 𝑅1𝐴 ) ⊆ ( 𝑅1𝐵 ) ) )