Step |
Hyp |
Ref |
Expression |
1 |
|
r1pid.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
r1pid.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
r1pid.c |
⊢ 𝐶 = ( Unic1p ‘ 𝑅 ) |
4 |
|
r1pid.q |
⊢ 𝑄 = ( quot1p ‘ 𝑅 ) |
5 |
|
r1pid.e |
⊢ 𝐸 = ( rem1p ‘ 𝑅 ) |
6 |
|
r1pid.t |
⊢ · = ( .r ‘ 𝑃 ) |
7 |
|
r1pid.m |
⊢ + = ( +g ‘ 𝑃 ) |
8 |
1 2 3
|
uc1pcl |
⊢ ( 𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐵 ) |
9 |
|
eqid |
⊢ ( -g ‘ 𝑃 ) = ( -g ‘ 𝑃 ) |
10 |
5 1 2 4 6 9
|
r1pval |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 𝐸 𝐺 ) = ( 𝐹 ( -g ‘ 𝑃 ) ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) ) |
11 |
8 10
|
sylan2 |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( 𝐹 𝐸 𝐺 ) = ( 𝐹 ( -g ‘ 𝑃 ) ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) ) |
12 |
11
|
3adant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( 𝐹 𝐸 𝐺 ) = ( 𝐹 ( -g ‘ 𝑃 ) ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) ) |
13 |
12
|
oveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) + ( 𝐹 𝐸 𝐺 ) ) = ( ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) + ( 𝐹 ( -g ‘ 𝑃 ) ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) ) ) |
14 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
15 |
14
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → 𝑃 ∈ Ring ) |
16 |
|
ringabl |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ Abel ) |
17 |
15 16
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → 𝑃 ∈ Abel ) |
18 |
4 1 2 3
|
q1pcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( 𝐹 𝑄 𝐺 ) ∈ 𝐵 ) |
19 |
8
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → 𝐺 ∈ 𝐵 ) |
20 |
2 6
|
ringcl |
⊢ ( ( 𝑃 ∈ Ring ∧ ( 𝐹 𝑄 𝐺 ) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ∈ 𝐵 ) |
21 |
15 18 19 20
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ∈ 𝐵 ) |
22 |
|
ringgrp |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ Grp ) |
23 |
15 22
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → 𝑃 ∈ Grp ) |
24 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → 𝐹 ∈ 𝐵 ) |
25 |
2 9
|
grpsubcl |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ∈ 𝐵 ) → ( 𝐹 ( -g ‘ 𝑃 ) ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) ∈ 𝐵 ) |
26 |
23 24 21 25
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( 𝐹 ( -g ‘ 𝑃 ) ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) ∈ 𝐵 ) |
27 |
2 7
|
ablcom |
⊢ ( ( 𝑃 ∈ Abel ∧ ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ∈ 𝐵 ∧ ( 𝐹 ( -g ‘ 𝑃 ) ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) ∈ 𝐵 ) → ( ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) + ( 𝐹 ( -g ‘ 𝑃 ) ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) ) = ( ( 𝐹 ( -g ‘ 𝑃 ) ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) + ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) ) |
28 |
17 21 26 27
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) + ( 𝐹 ( -g ‘ 𝑃 ) ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) ) = ( ( 𝐹 ( -g ‘ 𝑃 ) ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) + ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) ) |
29 |
2 7 9
|
grpnpcan |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ∈ 𝐵 ) → ( ( 𝐹 ( -g ‘ 𝑃 ) ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) + ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) = 𝐹 ) |
30 |
23 24 21 29
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( ( 𝐹 ( -g ‘ 𝑃 ) ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) + ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) = 𝐹 ) |
31 |
13 28 30
|
3eqtrrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → 𝐹 = ( ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) + ( 𝐹 𝐸 𝐺 ) ) ) |