Metamath Proof Explorer


Theorem r1pid

Description: Express the original polynomial F as F = ( q x. G ) + r using the quotient and remainder functions for q and r . (Contributed by Mario Carneiro, 5-Jun-2015)

Ref Expression
Hypotheses r1pid.p 𝑃 = ( Poly1𝑅 )
r1pid.b 𝐵 = ( Base ‘ 𝑃 )
r1pid.c 𝐶 = ( Unic1p𝑅 )
r1pid.q 𝑄 = ( quot1p𝑅 )
r1pid.e 𝐸 = ( rem1p𝑅 )
r1pid.t · = ( .r𝑃 )
r1pid.m + = ( +g𝑃 )
Assertion r1pid ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶 ) → 𝐹 = ( ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) + ( 𝐹 𝐸 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 r1pid.p 𝑃 = ( Poly1𝑅 )
2 r1pid.b 𝐵 = ( Base ‘ 𝑃 )
3 r1pid.c 𝐶 = ( Unic1p𝑅 )
4 r1pid.q 𝑄 = ( quot1p𝑅 )
5 r1pid.e 𝐸 = ( rem1p𝑅 )
6 r1pid.t · = ( .r𝑃 )
7 r1pid.m + = ( +g𝑃 )
8 1 2 3 uc1pcl ( 𝐺𝐶𝐺𝐵 )
9 eqid ( -g𝑃 ) = ( -g𝑃 )
10 5 1 2 4 6 9 r1pval ( ( 𝐹𝐵𝐺𝐵 ) → ( 𝐹 𝐸 𝐺 ) = ( 𝐹 ( -g𝑃 ) ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) )
11 8 10 sylan2 ( ( 𝐹𝐵𝐺𝐶 ) → ( 𝐹 𝐸 𝐺 ) = ( 𝐹 ( -g𝑃 ) ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) )
12 11 3adant1 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶 ) → ( 𝐹 𝐸 𝐺 ) = ( 𝐹 ( -g𝑃 ) ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) )
13 12 oveq2d ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶 ) → ( ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) + ( 𝐹 𝐸 𝐺 ) ) = ( ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) + ( 𝐹 ( -g𝑃 ) ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) ) )
14 1 ply1ring ( 𝑅 ∈ Ring → 𝑃 ∈ Ring )
15 14 3ad2ant1 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶 ) → 𝑃 ∈ Ring )
16 ringabl ( 𝑃 ∈ Ring → 𝑃 ∈ Abel )
17 15 16 syl ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶 ) → 𝑃 ∈ Abel )
18 4 1 2 3 q1pcl ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶 ) → ( 𝐹 𝑄 𝐺 ) ∈ 𝐵 )
19 8 3ad2ant3 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶 ) → 𝐺𝐵 )
20 2 6 ringcl ( ( 𝑃 ∈ Ring ∧ ( 𝐹 𝑄 𝐺 ) ∈ 𝐵𝐺𝐵 ) → ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ∈ 𝐵 )
21 15 18 19 20 syl3anc ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶 ) → ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ∈ 𝐵 )
22 ringgrp ( 𝑃 ∈ Ring → 𝑃 ∈ Grp )
23 15 22 syl ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶 ) → 𝑃 ∈ Grp )
24 simp2 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶 ) → 𝐹𝐵 )
25 2 9 grpsubcl ( ( 𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ∈ 𝐵 ) → ( 𝐹 ( -g𝑃 ) ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) ∈ 𝐵 )
26 23 24 21 25 syl3anc ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶 ) → ( 𝐹 ( -g𝑃 ) ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) ∈ 𝐵 )
27 2 7 ablcom ( ( 𝑃 ∈ Abel ∧ ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ∈ 𝐵 ∧ ( 𝐹 ( -g𝑃 ) ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) ∈ 𝐵 ) → ( ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) + ( 𝐹 ( -g𝑃 ) ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) ) = ( ( 𝐹 ( -g𝑃 ) ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) + ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) )
28 17 21 26 27 syl3anc ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶 ) → ( ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) + ( 𝐹 ( -g𝑃 ) ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) ) = ( ( 𝐹 ( -g𝑃 ) ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) + ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) )
29 2 7 9 grpnpcan ( ( 𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ∈ 𝐵 ) → ( ( 𝐹 ( -g𝑃 ) ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) + ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) = 𝐹 )
30 23 24 21 29 syl3anc ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶 ) → ( ( 𝐹 ( -g𝑃 ) ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) + ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) = 𝐹 )
31 13 28 30 3eqtrrd ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶 ) → 𝐹 = ( ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) + ( 𝐹 𝐸 𝐺 ) ) )