Step |
Hyp |
Ref |
Expression |
1 |
|
r1padd1.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
r1padd1.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
3 |
|
r1padd1.n |
⊢ 𝑁 = ( Unic1p ‘ 𝑅 ) |
4 |
|
r1padd1.e |
⊢ 𝐸 = ( rem1p ‘ 𝑅 ) |
5 |
|
r1pid2.r |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
6 |
|
r1pid2.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
7 |
|
r1pid2.p |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
8 |
|
r1pid2.q |
⊢ ( 𝜑 → 𝐵 ∈ 𝑁 ) |
9 |
5
|
idomringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
10 |
|
eqid |
⊢ ( quot1p ‘ 𝑅 ) = ( quot1p ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
12 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
13 |
1 2 3 10 4 11 12
|
r1pid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁 ) → 𝐴 = ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) ) |
14 |
9 7 8 13
|
syl3anc |
⊢ ( 𝜑 → 𝐴 = ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) ) |
15 |
14
|
eqeq2d |
⊢ ( 𝜑 → ( ( 𝐴 𝐸 𝐵 ) = 𝐴 ↔ ( 𝐴 𝐸 𝐵 ) = ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) ) ) |
16 |
|
eqcom |
⊢ ( ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) = ( 𝐴 𝐸 𝐵 ) ↔ ( 𝐴 𝐸 𝐵 ) = ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) ) |
17 |
15 16
|
bitr4di |
⊢ ( 𝜑 → ( ( 𝐴 𝐸 𝐵 ) = 𝐴 ↔ ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) = ( 𝐴 𝐸 𝐵 ) ) ) |
18 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
19 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
20 |
9 19
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
21 |
20
|
ringgrpd |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
22 |
4 1 2 3
|
r1pcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁 ) → ( 𝐴 𝐸 𝐵 ) ∈ 𝑈 ) |
23 |
9 7 8 22
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 𝐸 𝐵 ) ∈ 𝑈 ) |
24 |
2 12 18 21 23
|
grplidd |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑃 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) = ( 𝐴 𝐸 𝐵 ) ) |
25 |
24
|
eqeq2d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) = ( ( 0g ‘ 𝑃 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) ↔ ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) = ( 𝐴 𝐸 𝐵 ) ) ) |
26 |
10 1 2 3
|
q1pcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁 ) → ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ∈ 𝑈 ) |
27 |
9 7 8 26
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ∈ 𝑈 ) |
28 |
1 2 3
|
uc1pcl |
⊢ ( 𝐵 ∈ 𝑁 → 𝐵 ∈ 𝑈 ) |
29 |
8 28
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) |
30 |
2 11 20 27 29
|
ringcld |
⊢ ( 𝜑 → ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ∈ 𝑈 ) |
31 |
2 18
|
ring0cl |
⊢ ( 𝑃 ∈ Ring → ( 0g ‘ 𝑃 ) ∈ 𝑈 ) |
32 |
9 19 31
|
3syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) ∈ 𝑈 ) |
33 |
2 12
|
grprcan |
⊢ ( ( 𝑃 ∈ Grp ∧ ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ∈ 𝑈 ∧ ( 0g ‘ 𝑃 ) ∈ 𝑈 ∧ ( 𝐴 𝐸 𝐵 ) ∈ 𝑈 ) ) → ( ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) = ( ( 0g ‘ 𝑃 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) ↔ ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
34 |
21 30 32 23 33
|
syl13anc |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) = ( ( 0g ‘ 𝑃 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) ↔ ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
35 |
17 25 34
|
3bitr2d |
⊢ ( 𝜑 → ( ( 𝐴 𝐸 𝐵 ) = 𝐴 ↔ ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
36 |
|
isidom |
⊢ ( 𝑅 ∈ IDomn ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) ) |
37 |
5 36
|
sylib |
⊢ ( 𝜑 → ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) ) |
38 |
37
|
simpld |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
39 |
1
|
ply1crng |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CRing ) |
40 |
38 39
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ CRing ) |
41 |
2 11
|
crngcom |
⊢ ( ( 𝑃 ∈ CRing ∧ 𝐵 ∈ 𝑈 ∧ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ∈ 𝑈 ) → ( 𝐵 ( .r ‘ 𝑃 ) ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ) = ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ) |
42 |
40 29 27 41
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 ( .r ‘ 𝑃 ) ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ) = ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ) |
43 |
42
|
eqeq1d |
⊢ ( 𝜑 → ( ( 𝐵 ( .r ‘ 𝑃 ) ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ) = ( 0g ‘ 𝑃 ) ↔ ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
44 |
5
|
idomdomd |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
45 |
1
|
ply1domn |
⊢ ( 𝑅 ∈ Domn → 𝑃 ∈ Domn ) |
46 |
44 45
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Domn ) |
47 |
1 18 3
|
uc1pn0 |
⊢ ( 𝐵 ∈ 𝑁 → 𝐵 ≠ ( 0g ‘ 𝑃 ) ) |
48 |
8 47
|
syl |
⊢ ( 𝜑 → 𝐵 ≠ ( 0g ‘ 𝑃 ) ) |
49 |
|
eqid |
⊢ ( RLReg ‘ 𝑃 ) = ( RLReg ‘ 𝑃 ) |
50 |
2 49 18
|
domnrrg |
⊢ ( ( 𝑃 ∈ Domn ∧ 𝐵 ∈ 𝑈 ∧ 𝐵 ≠ ( 0g ‘ 𝑃 ) ) → 𝐵 ∈ ( RLReg ‘ 𝑃 ) ) |
51 |
46 29 48 50
|
syl3anc |
⊢ ( 𝜑 → 𝐵 ∈ ( RLReg ‘ 𝑃 ) ) |
52 |
49 2 11 18
|
rrgeq0 |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝐵 ∈ ( RLReg ‘ 𝑃 ) ∧ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ∈ 𝑈 ) → ( ( 𝐵 ( .r ‘ 𝑃 ) ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ) = ( 0g ‘ 𝑃 ) ↔ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
53 |
20 51 27 52
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐵 ( .r ‘ 𝑃 ) ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ) = ( 0g ‘ 𝑃 ) ↔ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
54 |
35 43 53
|
3bitr2d |
⊢ ( 𝜑 → ( ( 𝐴 𝐸 𝐵 ) = 𝐴 ↔ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
55 |
2 11 18 20 29
|
ringlzd |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) |
56 |
55
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝑃 ) ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) ) = ( 𝐴 ( -g ‘ 𝑃 ) ( 0g ‘ 𝑃 ) ) ) |
57 |
|
eqid |
⊢ ( -g ‘ 𝑃 ) = ( -g ‘ 𝑃 ) |
58 |
2 18 57
|
grpsubid1 |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝐴 ∈ 𝑈 ) → ( 𝐴 ( -g ‘ 𝑃 ) ( 0g ‘ 𝑃 ) ) = 𝐴 ) |
59 |
21 7 58
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝑃 ) ( 0g ‘ 𝑃 ) ) = 𝐴 ) |
60 |
56 59
|
eqtr2d |
⊢ ( 𝜑 → 𝐴 = ( 𝐴 ( -g ‘ 𝑃 ) ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) ) ) |
61 |
60
|
fveq2d |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐴 ) = ( 𝐷 ‘ ( 𝐴 ( -g ‘ 𝑃 ) ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) ) ) ) |
62 |
61
|
breq1d |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐴 ) < ( 𝐷 ‘ 𝐵 ) ↔ ( 𝐷 ‘ ( 𝐴 ( -g ‘ 𝑃 ) ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) ) ) < ( 𝐷 ‘ 𝐵 ) ) ) |
63 |
32
|
biantrurd |
⊢ ( 𝜑 → ( ( 𝐷 ‘ ( 𝐴 ( -g ‘ 𝑃 ) ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) ) ) < ( 𝐷 ‘ 𝐵 ) ↔ ( ( 0g ‘ 𝑃 ) ∈ 𝑈 ∧ ( 𝐷 ‘ ( 𝐴 ( -g ‘ 𝑃 ) ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) ) ) < ( 𝐷 ‘ 𝐵 ) ) ) ) |
64 |
10 1 2 6 57 11 3
|
q1peqb |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁 ) → ( ( ( 0g ‘ 𝑃 ) ∈ 𝑈 ∧ ( 𝐷 ‘ ( 𝐴 ( -g ‘ 𝑃 ) ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) ) ) < ( 𝐷 ‘ 𝐵 ) ) ↔ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
65 |
9 7 8 64
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 0g ‘ 𝑃 ) ∈ 𝑈 ∧ ( 𝐷 ‘ ( 𝐴 ( -g ‘ 𝑃 ) ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) ) ) < ( 𝐷 ‘ 𝐵 ) ) ↔ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
66 |
62 63 65
|
3bitrd |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐴 ) < ( 𝐷 ‘ 𝐵 ) ↔ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
67 |
54 66
|
bitr4d |
⊢ ( 𝜑 → ( ( 𝐴 𝐸 𝐵 ) = 𝐴 ↔ ( 𝐷 ‘ 𝐴 ) < ( 𝐷 ‘ 𝐵 ) ) ) |