Step |
Hyp |
Ref |
Expression |
1 |
|
r1pid2.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
r1pid2.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
3 |
|
r1pid2.n |
⊢ 𝑁 = ( Unic1p ‘ 𝑅 ) |
4 |
|
r1pid2.e |
⊢ 𝐸 = ( rem1p ‘ 𝑅 ) |
5 |
|
r1pid2.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
6 |
|
r1pid2.r |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
7 |
|
r1pid2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
8 |
|
r1pid2.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑁 ) |
9 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
10 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
11 |
|
domnring |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ Ring ) |
12 |
6 11
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
13 |
|
eqid |
⊢ ( quot1p ‘ 𝑅 ) = ( quot1p ‘ 𝑅 ) |
14 |
13 1 2 3
|
q1pcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁 ) → ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ∈ 𝑈 ) |
15 |
12 7 8 14
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ∈ 𝑈 ) |
16 |
1 2 3
|
uc1pcl |
⊢ ( 𝐵 ∈ 𝑁 → 𝐵 ∈ 𝑈 ) |
17 |
8 16
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) |
18 |
1 9 3
|
uc1pn0 |
⊢ ( 𝐵 ∈ 𝑁 → 𝐵 ≠ ( 0g ‘ 𝑃 ) ) |
19 |
8 18
|
syl |
⊢ ( 𝜑 → 𝐵 ≠ ( 0g ‘ 𝑃 ) ) |
20 |
17 19
|
eldifsnd |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑈 ∖ { ( 0g ‘ 𝑃 ) } ) ) |
21 |
1
|
ply1domn |
⊢ ( 𝑅 ∈ Domn → 𝑃 ∈ Domn ) |
22 |
6 21
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Domn ) |
23 |
2 9 10 15 20 22
|
domneq0r |
⊢ ( 𝜑 → ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ↔ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
24 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
25 |
1 2 3 13 4 10 24
|
r1pid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁 ) → 𝐴 = ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) ) |
26 |
12 7 8 25
|
syl3anc |
⊢ ( 𝜑 → 𝐴 = ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) ) |
27 |
26
|
eqeq2d |
⊢ ( 𝜑 → ( ( 𝐴 𝐸 𝐵 ) = 𝐴 ↔ ( 𝐴 𝐸 𝐵 ) = ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) ) ) |
28 |
|
eqcom |
⊢ ( ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) = ( 𝐴 𝐸 𝐵 ) ↔ ( 𝐴 𝐸 𝐵 ) = ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) ) |
29 |
27 28
|
bitr4di |
⊢ ( 𝜑 → ( ( 𝐴 𝐸 𝐵 ) = 𝐴 ↔ ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) = ( 𝐴 𝐸 𝐵 ) ) ) |
30 |
|
domnring |
⊢ ( 𝑃 ∈ Domn → 𝑃 ∈ Ring ) |
31 |
22 30
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
32 |
31
|
ringgrpd |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
33 |
4 1 2 3
|
r1pcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁 ) → ( 𝐴 𝐸 𝐵 ) ∈ 𝑈 ) |
34 |
12 7 8 33
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 𝐸 𝐵 ) ∈ 𝑈 ) |
35 |
2 24 9 32 34
|
grplidd |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑃 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) = ( 𝐴 𝐸 𝐵 ) ) |
36 |
35
|
eqeq2d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) = ( ( 0g ‘ 𝑃 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) ↔ ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) = ( 𝐴 𝐸 𝐵 ) ) ) |
37 |
2 10 31 15 17
|
ringcld |
⊢ ( 𝜑 → ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ∈ 𝑈 ) |
38 |
2 9
|
ring0cl |
⊢ ( 𝑃 ∈ Ring → ( 0g ‘ 𝑃 ) ∈ 𝑈 ) |
39 |
31 38
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) ∈ 𝑈 ) |
40 |
2 24
|
grprcan |
⊢ ( ( 𝑃 ∈ Grp ∧ ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ∈ 𝑈 ∧ ( 0g ‘ 𝑃 ) ∈ 𝑈 ∧ ( 𝐴 𝐸 𝐵 ) ∈ 𝑈 ) ) → ( ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) = ( ( 0g ‘ 𝑃 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) ↔ ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
41 |
32 37 39 34 40
|
syl13anc |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) = ( ( 0g ‘ 𝑃 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) ↔ ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
42 |
29 36 41
|
3bitr2d |
⊢ ( 𝜑 → ( ( 𝐴 𝐸 𝐵 ) = 𝐴 ↔ ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
43 |
2 10 9 31 17
|
ringlzd |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) |
44 |
43
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝑃 ) ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) ) = ( 𝐴 ( -g ‘ 𝑃 ) ( 0g ‘ 𝑃 ) ) ) |
45 |
|
eqid |
⊢ ( -g ‘ 𝑃 ) = ( -g ‘ 𝑃 ) |
46 |
2 9 45
|
grpsubid1 |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝐴 ∈ 𝑈 ) → ( 𝐴 ( -g ‘ 𝑃 ) ( 0g ‘ 𝑃 ) ) = 𝐴 ) |
47 |
32 7 46
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝑃 ) ( 0g ‘ 𝑃 ) ) = 𝐴 ) |
48 |
44 47
|
eqtr2d |
⊢ ( 𝜑 → 𝐴 = ( 𝐴 ( -g ‘ 𝑃 ) ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) ) ) |
49 |
48
|
fveq2d |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐴 ) = ( 𝐷 ‘ ( 𝐴 ( -g ‘ 𝑃 ) ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) ) ) ) |
50 |
49
|
breq1d |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐴 ) < ( 𝐷 ‘ 𝐵 ) ↔ ( 𝐷 ‘ ( 𝐴 ( -g ‘ 𝑃 ) ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) ) ) < ( 𝐷 ‘ 𝐵 ) ) ) |
51 |
39
|
biantrurd |
⊢ ( 𝜑 → ( ( 𝐷 ‘ ( 𝐴 ( -g ‘ 𝑃 ) ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) ) ) < ( 𝐷 ‘ 𝐵 ) ↔ ( ( 0g ‘ 𝑃 ) ∈ 𝑈 ∧ ( 𝐷 ‘ ( 𝐴 ( -g ‘ 𝑃 ) ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) ) ) < ( 𝐷 ‘ 𝐵 ) ) ) ) |
52 |
13 1 2 5 45 10 3
|
q1peqb |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁 ) → ( ( ( 0g ‘ 𝑃 ) ∈ 𝑈 ∧ ( 𝐷 ‘ ( 𝐴 ( -g ‘ 𝑃 ) ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) ) ) < ( 𝐷 ‘ 𝐵 ) ) ↔ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
53 |
12 7 8 52
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 0g ‘ 𝑃 ) ∈ 𝑈 ∧ ( 𝐷 ‘ ( 𝐴 ( -g ‘ 𝑃 ) ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) ) ) < ( 𝐷 ‘ 𝐵 ) ) ↔ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
54 |
50 51 53
|
3bitrd |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐴 ) < ( 𝐷 ‘ 𝐵 ) ↔ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
55 |
23 42 54
|
3bitr4d |
⊢ ( 𝜑 → ( ( 𝐴 𝐸 𝐵 ) = 𝐴 ↔ ( 𝐷 ‘ 𝐴 ) < ( 𝐷 ‘ 𝐵 ) ) ) |