Step |
Hyp |
Ref |
Expression |
1 |
|
r1padd1.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
r1padd1.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
3 |
|
r1padd1.n |
⊢ 𝑁 = ( Unic1p ‘ 𝑅 ) |
4 |
|
r1padd1.e |
⊢ 𝐸 = ( rem1p ‘ 𝑅 ) |
5 |
|
r1pvsca.6 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
6 |
|
r1pvsca.7 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
7 |
|
r1pvsca.10 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑁 ) |
8 |
|
r1pvsca.1 |
⊢ × = ( ·𝑠 ‘ 𝑃 ) |
9 |
|
r1pvsca.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
10 |
|
r1pvsca.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) |
11 |
|
eqid |
⊢ ( quot1p ‘ 𝑅 ) = ( quot1p ‘ 𝑅 ) |
12 |
11 1 2 3
|
q1pcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐷 ∈ 𝑁 ) → ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ∈ 𝑈 ) |
13 |
5 6 7 12
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ∈ 𝑈 ) |
14 |
1 2 3
|
uc1pcl |
⊢ ( 𝐷 ∈ 𝑁 → 𝐷 ∈ 𝑈 ) |
15 |
7 14
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ 𝑈 ) |
16 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
17 |
1 16 2 9 8
|
ply1ass23l |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐵 ∈ 𝐾 ∧ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ∈ 𝑈 ∧ 𝐷 ∈ 𝑈 ) ) → ( ( 𝐵 × ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ) ( .r ‘ 𝑃 ) 𝐷 ) = ( 𝐵 × ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) ) |
18 |
5 10 13 15 17
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐵 × ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ) ( .r ‘ 𝑃 ) 𝐷 ) = ( 𝐵 × ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) ) |
19 |
18
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐵 × 𝐴 ) ( -g ‘ 𝑃 ) ( ( 𝐵 × ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ) ( .r ‘ 𝑃 ) 𝐷 ) ) = ( ( 𝐵 × 𝐴 ) ( -g ‘ 𝑃 ) ( 𝐵 × ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) ) ) |
20 |
1 2 3 11 5 6 7 8 9 10
|
q1pvsca |
⊢ ( 𝜑 → ( ( 𝐵 × 𝐴 ) ( quot1p ‘ 𝑅 ) 𝐷 ) = ( 𝐵 × ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ) ) |
21 |
20
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐵 × 𝐴 ) ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) = ( ( 𝐵 × ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ) ( .r ‘ 𝑃 ) 𝐷 ) ) |
22 |
21
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐵 × 𝐴 ) ( -g ‘ 𝑃 ) ( ( ( 𝐵 × 𝐴 ) ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) = ( ( 𝐵 × 𝐴 ) ( -g ‘ 𝑃 ) ( ( 𝐵 × ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ) ( .r ‘ 𝑃 ) 𝐷 ) ) ) |
23 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
24 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
25 |
|
eqid |
⊢ ( -g ‘ 𝑃 ) = ( -g ‘ 𝑃 ) |
26 |
1
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
27 |
5 26
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
28 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
29 |
5 28
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
30 |
29
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
31 |
9 30
|
eqtrid |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
32 |
10 31
|
eleqtrd |
⊢ ( 𝜑 → 𝐵 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
33 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
34 |
5 33
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
35 |
2 16 34 13 15
|
ringcld |
⊢ ( 𝜑 → ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ∈ 𝑈 ) |
36 |
2 8 23 24 25 27 32 6 35
|
lmodsubdi |
⊢ ( 𝜑 → ( 𝐵 × ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) ) = ( ( 𝐵 × 𝐴 ) ( -g ‘ 𝑃 ) ( 𝐵 × ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) ) ) |
37 |
19 22 36
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐵 × 𝐴 ) ( -g ‘ 𝑃 ) ( ( ( 𝐵 × 𝐴 ) ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) = ( 𝐵 × ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) ) ) |
38 |
2 23 8 24 27 32 6
|
lmodvscld |
⊢ ( 𝜑 → ( 𝐵 × 𝐴 ) ∈ 𝑈 ) |
39 |
4 1 2 11 16 25
|
r1pval |
⊢ ( ( ( 𝐵 × 𝐴 ) ∈ 𝑈 ∧ 𝐷 ∈ 𝑈 ) → ( ( 𝐵 × 𝐴 ) 𝐸 𝐷 ) = ( ( 𝐵 × 𝐴 ) ( -g ‘ 𝑃 ) ( ( ( 𝐵 × 𝐴 ) ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) ) |
40 |
38 15 39
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐵 × 𝐴 ) 𝐸 𝐷 ) = ( ( 𝐵 × 𝐴 ) ( -g ‘ 𝑃 ) ( ( ( 𝐵 × 𝐴 ) ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) ) |
41 |
4 1 2 11 16 25
|
r1pval |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐷 ∈ 𝑈 ) → ( 𝐴 𝐸 𝐷 ) = ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) ) |
42 |
6 15 41
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 𝐸 𝐷 ) = ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) ) |
43 |
42
|
oveq2d |
⊢ ( 𝜑 → ( 𝐵 × ( 𝐴 𝐸 𝐷 ) ) = ( 𝐵 × ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) ) ) |
44 |
37 40 43
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐵 × 𝐴 ) 𝐸 𝐷 ) = ( 𝐵 × ( 𝐴 𝐸 𝐷 ) ) ) |