Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ) ) |
2 |
|
pweq |
⊢ ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 ) |
3 |
2
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( 𝒫 𝑥 ∈ ( 𝑅1 ‘ suc 𝐵 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) |
4 |
1 3
|
bibi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝑥 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ↔ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) ) |
5 |
4
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ∈ On → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝑥 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) ↔ ( 𝐵 ∈ On → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) ) ) |
6 |
|
vex |
⊢ 𝑥 ∈ V |
7 |
6
|
rankr1a |
⊢ ( 𝐵 ∈ On → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝑥 ) ∈ 𝐵 ) ) |
8 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
9 |
|
ordsucelsuc |
⊢ ( Ord 𝐵 → ( ( rank ‘ 𝑥 ) ∈ 𝐵 ↔ suc ( rank ‘ 𝑥 ) ∈ suc 𝐵 ) ) |
10 |
8 9
|
syl |
⊢ ( 𝐵 ∈ On → ( ( rank ‘ 𝑥 ) ∈ 𝐵 ↔ suc ( rank ‘ 𝑥 ) ∈ suc 𝐵 ) ) |
11 |
7 10
|
bitrd |
⊢ ( 𝐵 ∈ On → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ suc ( rank ‘ 𝑥 ) ∈ suc 𝐵 ) ) |
12 |
6
|
rankpw |
⊢ ( rank ‘ 𝒫 𝑥 ) = suc ( rank ‘ 𝑥 ) |
13 |
12
|
eleq1i |
⊢ ( ( rank ‘ 𝒫 𝑥 ) ∈ suc 𝐵 ↔ suc ( rank ‘ 𝑥 ) ∈ suc 𝐵 ) |
14 |
11 13
|
bitr4di |
⊢ ( 𝐵 ∈ On → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝒫 𝑥 ) ∈ suc 𝐵 ) ) |
15 |
|
suceloni |
⊢ ( 𝐵 ∈ On → suc 𝐵 ∈ On ) |
16 |
6
|
pwex |
⊢ 𝒫 𝑥 ∈ V |
17 |
16
|
rankr1a |
⊢ ( suc 𝐵 ∈ On → ( 𝒫 𝑥 ∈ ( 𝑅1 ‘ suc 𝐵 ) ↔ ( rank ‘ 𝒫 𝑥 ) ∈ suc 𝐵 ) ) |
18 |
15 17
|
syl |
⊢ ( 𝐵 ∈ On → ( 𝒫 𝑥 ∈ ( 𝑅1 ‘ suc 𝐵 ) ↔ ( rank ‘ 𝒫 𝑥 ) ∈ suc 𝐵 ) ) |
19 |
14 18
|
bitr4d |
⊢ ( 𝐵 ∈ On → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝑥 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) |
20 |
5 19
|
vtoclg |
⊢ ( 𝐴 ∈ V → ( 𝐵 ∈ On → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) ) |
21 |
|
elex |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐴 ∈ V ) |
22 |
|
elex |
⊢ ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) → 𝒫 𝐴 ∈ V ) |
23 |
|
pwexb |
⊢ ( 𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V ) |
24 |
22 23
|
sylibr |
⊢ ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) → 𝐴 ∈ V ) |
25 |
21 24
|
pm5.21ni |
⊢ ( ¬ 𝐴 ∈ V → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) |
26 |
25
|
a1d |
⊢ ( ¬ 𝐴 ∈ V → ( 𝐵 ∈ On → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) ) |
27 |
20 26
|
pm2.61i |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) |