Metamath Proof Explorer


Theorem r1pwss

Description: Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion r1pwss ( 𝐴 ∈ ( 𝑅1𝐵 ) → 𝒫 𝐴 ⊆ ( 𝑅1𝐵 ) )

Proof

Step Hyp Ref Expression
1 r1funlim ( Fun 𝑅1 ∧ Lim dom 𝑅1 )
2 1 simpri Lim dom 𝑅1
3 limord ( Lim dom 𝑅1 → Ord dom 𝑅1 )
4 2 3 ax-mp Ord dom 𝑅1
5 ordsson ( Ord dom 𝑅1 → dom 𝑅1 ⊆ On )
6 4 5 ax-mp dom 𝑅1 ⊆ On
7 elfvdm ( 𝐴 ∈ ( 𝑅1𝐵 ) → 𝐵 ∈ dom 𝑅1 )
8 6 7 sseldi ( 𝐴 ∈ ( 𝑅1𝐵 ) → 𝐵 ∈ On )
9 onzsl ( 𝐵 ∈ On ↔ ( 𝐵 = ∅ ∨ ∃ 𝑥 ∈ On 𝐵 = suc 𝑥 ∨ ( 𝐵 ∈ V ∧ Lim 𝐵 ) ) )
10 8 9 sylib ( 𝐴 ∈ ( 𝑅1𝐵 ) → ( 𝐵 = ∅ ∨ ∃ 𝑥 ∈ On 𝐵 = suc 𝑥 ∨ ( 𝐵 ∈ V ∧ Lim 𝐵 ) ) )
11 noel ¬ 𝐴 ∈ ∅
12 fveq2 ( 𝐵 = ∅ → ( 𝑅1𝐵 ) = ( 𝑅1 ‘ ∅ ) )
13 r10 ( 𝑅1 ‘ ∅ ) = ∅
14 12 13 eqtrdi ( 𝐵 = ∅ → ( 𝑅1𝐵 ) = ∅ )
15 14 eleq2d ( 𝐵 = ∅ → ( 𝐴 ∈ ( 𝑅1𝐵 ) ↔ 𝐴 ∈ ∅ ) )
16 15 biimpcd ( 𝐴 ∈ ( 𝑅1𝐵 ) → ( 𝐵 = ∅ → 𝐴 ∈ ∅ ) )
17 11 16 mtoi ( 𝐴 ∈ ( 𝑅1𝐵 ) → ¬ 𝐵 = ∅ )
18 17 pm2.21d ( 𝐴 ∈ ( 𝑅1𝐵 ) → ( 𝐵 = ∅ → 𝒫 𝐴 ⊆ ( 𝑅1𝐵 ) ) )
19 simpl ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ 𝐵 = suc 𝑥 ) → 𝐴 ∈ ( 𝑅1𝐵 ) )
20 simpr ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ 𝐵 = suc 𝑥 ) → 𝐵 = suc 𝑥 )
21 20 fveq2d ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ 𝐵 = suc 𝑥 ) → ( 𝑅1𝐵 ) = ( 𝑅1 ‘ suc 𝑥 ) )
22 7 adantr ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ 𝐵 = suc 𝑥 ) → 𝐵 ∈ dom 𝑅1 )
23 20 22 eqeltrrd ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ 𝐵 = suc 𝑥 ) → suc 𝑥 ∈ dom 𝑅1 )
24 limsuc ( Lim dom 𝑅1 → ( 𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1 ) )
25 2 24 ax-mp ( 𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1 )
26 23 25 sylibr ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ 𝐵 = suc 𝑥 ) → 𝑥 ∈ dom 𝑅1 )
27 r1sucg ( 𝑥 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1𝑥 ) )
28 26 27 syl ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ 𝐵 = suc 𝑥 ) → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1𝑥 ) )
29 21 28 eqtrd ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ 𝐵 = suc 𝑥 ) → ( 𝑅1𝐵 ) = 𝒫 ( 𝑅1𝑥 ) )
30 19 29 eleqtrd ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ 𝐵 = suc 𝑥 ) → 𝐴 ∈ 𝒫 ( 𝑅1𝑥 ) )
31 elpwi ( 𝐴 ∈ 𝒫 ( 𝑅1𝑥 ) → 𝐴 ⊆ ( 𝑅1𝑥 ) )
32 sspw ( 𝐴 ⊆ ( 𝑅1𝑥 ) → 𝒫 𝐴 ⊆ 𝒫 ( 𝑅1𝑥 ) )
33 30 31 32 3syl ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ 𝐵 = suc 𝑥 ) → 𝒫 𝐴 ⊆ 𝒫 ( 𝑅1𝑥 ) )
34 33 29 sseqtrrd ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ 𝐵 = suc 𝑥 ) → 𝒫 𝐴 ⊆ ( 𝑅1𝐵 ) )
35 34 ex ( 𝐴 ∈ ( 𝑅1𝐵 ) → ( 𝐵 = suc 𝑥 → 𝒫 𝐴 ⊆ ( 𝑅1𝐵 ) ) )
36 35 rexlimdvw ( 𝐴 ∈ ( 𝑅1𝐵 ) → ( ∃ 𝑥 ∈ On 𝐵 = suc 𝑥 → 𝒫 𝐴 ⊆ ( 𝑅1𝐵 ) ) )
37 r1tr Tr ( 𝑅1𝐵 )
38 simpl ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) → 𝐴 ∈ ( 𝑅1𝐵 ) )
39 r1limg ( ( 𝐵 ∈ dom 𝑅1 ∧ Lim 𝐵 ) → ( 𝑅1𝐵 ) = 𝑥𝐵 ( 𝑅1𝑥 ) )
40 7 39 sylan ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) → ( 𝑅1𝐵 ) = 𝑥𝐵 ( 𝑅1𝑥 ) )
41 38 40 eleqtrd ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) → 𝐴 𝑥𝐵 ( 𝑅1𝑥 ) )
42 eliun ( 𝐴 𝑥𝐵 ( 𝑅1𝑥 ) ↔ ∃ 𝑥𝐵 𝐴 ∈ ( 𝑅1𝑥 ) )
43 41 42 sylib ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) → ∃ 𝑥𝐵 𝐴 ∈ ( 𝑅1𝑥 ) )
44 simprl ( ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥𝐵𝐴 ∈ ( 𝑅1𝑥 ) ) ) → 𝑥𝐵 )
45 limsuc ( Lim 𝐵 → ( 𝑥𝐵 ↔ suc 𝑥𝐵 ) )
46 45 ad2antlr ( ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥𝐵𝐴 ∈ ( 𝑅1𝑥 ) ) ) → ( 𝑥𝐵 ↔ suc 𝑥𝐵 ) )
47 44 46 mpbid ( ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥𝐵𝐴 ∈ ( 𝑅1𝑥 ) ) ) → suc 𝑥𝐵 )
48 limsuc ( Lim 𝐵 → ( suc 𝑥𝐵 ↔ suc suc 𝑥𝐵 ) )
49 48 ad2antlr ( ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥𝐵𝐴 ∈ ( 𝑅1𝑥 ) ) ) → ( suc 𝑥𝐵 ↔ suc suc 𝑥𝐵 ) )
50 47 49 mpbid ( ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥𝐵𝐴 ∈ ( 𝑅1𝑥 ) ) ) → suc suc 𝑥𝐵 )
51 r1tr Tr ( 𝑅1𝑥 )
52 simprr ( ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥𝐵𝐴 ∈ ( 𝑅1𝑥 ) ) ) → 𝐴 ∈ ( 𝑅1𝑥 ) )
53 trss ( Tr ( 𝑅1𝑥 ) → ( 𝐴 ∈ ( 𝑅1𝑥 ) → 𝐴 ⊆ ( 𝑅1𝑥 ) ) )
54 51 52 53 mpsyl ( ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥𝐵𝐴 ∈ ( 𝑅1𝑥 ) ) ) → 𝐴 ⊆ ( 𝑅1𝑥 ) )
55 54 32 syl ( ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥𝐵𝐴 ∈ ( 𝑅1𝑥 ) ) ) → 𝒫 𝐴 ⊆ 𝒫 ( 𝑅1𝑥 ) )
56 7 ad2antrr ( ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥𝐵𝐴 ∈ ( 𝑅1𝑥 ) ) ) → 𝐵 ∈ dom 𝑅1 )
57 ordtr1 ( Ord dom 𝑅1 → ( ( 𝑥𝐵𝐵 ∈ dom 𝑅1 ) → 𝑥 ∈ dom 𝑅1 ) )
58 4 57 ax-mp ( ( 𝑥𝐵𝐵 ∈ dom 𝑅1 ) → 𝑥 ∈ dom 𝑅1 )
59 44 56 58 syl2anc ( ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥𝐵𝐴 ∈ ( 𝑅1𝑥 ) ) ) → 𝑥 ∈ dom 𝑅1 )
60 59 27 syl ( ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥𝐵𝐴 ∈ ( 𝑅1𝑥 ) ) ) → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1𝑥 ) )
61 55 60 sseqtrrd ( ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥𝐵𝐴 ∈ ( 𝑅1𝑥 ) ) ) → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ suc 𝑥 ) )
62 fvex ( 𝑅1 ‘ suc 𝑥 ) ∈ V
63 62 elpw2 ( 𝒫 𝐴 ∈ 𝒫 ( 𝑅1 ‘ suc 𝑥 ) ↔ 𝒫 𝐴 ⊆ ( 𝑅1 ‘ suc 𝑥 ) )
64 61 63 sylibr ( ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥𝐵𝐴 ∈ ( 𝑅1𝑥 ) ) ) → 𝒫 𝐴 ∈ 𝒫 ( 𝑅1 ‘ suc 𝑥 ) )
65 59 25 sylib ( ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥𝐵𝐴 ∈ ( 𝑅1𝑥 ) ) ) → suc 𝑥 ∈ dom 𝑅1 )
66 r1sucg ( suc 𝑥 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ suc 𝑥 ) )
67 65 66 syl ( ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥𝐵𝐴 ∈ ( 𝑅1𝑥 ) ) ) → ( 𝑅1 ‘ suc suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ suc 𝑥 ) )
68 64 67 eleqtrrd ( ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥𝐵𝐴 ∈ ( 𝑅1𝑥 ) ) ) → 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc suc 𝑥 ) )
69 fveq2 ( 𝑦 = suc suc 𝑥 → ( 𝑅1𝑦 ) = ( 𝑅1 ‘ suc suc 𝑥 ) )
70 69 eleq2d ( 𝑦 = suc suc 𝑥 → ( 𝒫 𝐴 ∈ ( 𝑅1𝑦 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc suc 𝑥 ) ) )
71 70 rspcev ( ( suc suc 𝑥𝐵 ∧ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc suc 𝑥 ) ) → ∃ 𝑦𝐵 𝒫 𝐴 ∈ ( 𝑅1𝑦 ) )
72 50 68 71 syl2anc ( ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥𝐵𝐴 ∈ ( 𝑅1𝑥 ) ) ) → ∃ 𝑦𝐵 𝒫 𝐴 ∈ ( 𝑅1𝑦 ) )
73 43 72 rexlimddv ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) → ∃ 𝑦𝐵 𝒫 𝐴 ∈ ( 𝑅1𝑦 ) )
74 eliun ( 𝒫 𝐴 𝑦𝐵 ( 𝑅1𝑦 ) ↔ ∃ 𝑦𝐵 𝒫 𝐴 ∈ ( 𝑅1𝑦 ) )
75 73 74 sylibr ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) → 𝒫 𝐴 𝑦𝐵 ( 𝑅1𝑦 ) )
76 r1limg ( ( 𝐵 ∈ dom 𝑅1 ∧ Lim 𝐵 ) → ( 𝑅1𝐵 ) = 𝑦𝐵 ( 𝑅1𝑦 ) )
77 7 76 sylan ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) → ( 𝑅1𝐵 ) = 𝑦𝐵 ( 𝑅1𝑦 ) )
78 75 77 eleqtrrd ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) → 𝒫 𝐴 ∈ ( 𝑅1𝐵 ) )
79 trss ( Tr ( 𝑅1𝐵 ) → ( 𝒫 𝐴 ∈ ( 𝑅1𝐵 ) → 𝒫 𝐴 ⊆ ( 𝑅1𝐵 ) ) )
80 37 78 79 mpsyl ( ( 𝐴 ∈ ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) → 𝒫 𝐴 ⊆ ( 𝑅1𝐵 ) )
81 80 ex ( 𝐴 ∈ ( 𝑅1𝐵 ) → ( Lim 𝐵 → 𝒫 𝐴 ⊆ ( 𝑅1𝐵 ) ) )
82 81 adantld ( 𝐴 ∈ ( 𝑅1𝐵 ) → ( ( 𝐵 ∈ V ∧ Lim 𝐵 ) → 𝒫 𝐴 ⊆ ( 𝑅1𝐵 ) ) )
83 18 36 82 3jaod ( 𝐴 ∈ ( 𝑅1𝐵 ) → ( ( 𝐵 = ∅ ∨ ∃ 𝑥 ∈ On 𝐵 = suc 𝑥 ∨ ( 𝐵 ∈ V ∧ Lim 𝐵 ) ) → 𝒫 𝐴 ⊆ ( 𝑅1𝐵 ) ) )
84 10 83 mpd ( 𝐴 ∈ ( 𝑅1𝐵 ) → 𝒫 𝐴 ⊆ ( 𝑅1𝐵 ) )