| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1funlim |
⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) |
| 2 |
1
|
simpri |
⊢ Lim dom 𝑅1 |
| 3 |
|
limord |
⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) |
| 4 |
2 3
|
ax-mp |
⊢ Ord dom 𝑅1 |
| 5 |
|
ordsson |
⊢ ( Ord dom 𝑅1 → dom 𝑅1 ⊆ On ) |
| 6 |
4 5
|
ax-mp |
⊢ dom 𝑅1 ⊆ On |
| 7 |
|
elfvdm |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐵 ∈ dom 𝑅1 ) |
| 8 |
6 7
|
sselid |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐵 ∈ On ) |
| 9 |
|
onzsl |
⊢ ( 𝐵 ∈ On ↔ ( 𝐵 = ∅ ∨ ∃ 𝑥 ∈ On 𝐵 = suc 𝑥 ∨ ( 𝐵 ∈ V ∧ Lim 𝐵 ) ) ) |
| 10 |
8 9
|
sylib |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( 𝐵 = ∅ ∨ ∃ 𝑥 ∈ On 𝐵 = suc 𝑥 ∨ ( 𝐵 ∈ V ∧ Lim 𝐵 ) ) ) |
| 11 |
|
noel |
⊢ ¬ 𝐴 ∈ ∅ |
| 12 |
|
fveq2 |
⊢ ( 𝐵 = ∅ → ( 𝑅1 ‘ 𝐵 ) = ( 𝑅1 ‘ ∅ ) ) |
| 13 |
|
r10 |
⊢ ( 𝑅1 ‘ ∅ ) = ∅ |
| 14 |
12 13
|
eqtrdi |
⊢ ( 𝐵 = ∅ → ( 𝑅1 ‘ 𝐵 ) = ∅ ) |
| 15 |
14
|
eleq2d |
⊢ ( 𝐵 = ∅ → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝐴 ∈ ∅ ) ) |
| 16 |
15
|
biimpcd |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( 𝐵 = ∅ → 𝐴 ∈ ∅ ) ) |
| 17 |
11 16
|
mtoi |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ¬ 𝐵 = ∅ ) |
| 18 |
17
|
pm2.21d |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( 𝐵 = ∅ → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) ) |
| 19 |
|
simpl |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐵 = suc 𝑥 ) → 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ) |
| 20 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐵 = suc 𝑥 ) → 𝐵 = suc 𝑥 ) |
| 21 |
20
|
fveq2d |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐵 = suc 𝑥 ) → ( 𝑅1 ‘ 𝐵 ) = ( 𝑅1 ‘ suc 𝑥 ) ) |
| 22 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐵 = suc 𝑥 ) → 𝐵 ∈ dom 𝑅1 ) |
| 23 |
20 22
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐵 = suc 𝑥 ) → suc 𝑥 ∈ dom 𝑅1 ) |
| 24 |
|
limsuc |
⊢ ( Lim dom 𝑅1 → ( 𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1 ) ) |
| 25 |
2 24
|
ax-mp |
⊢ ( 𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1 ) |
| 26 |
23 25
|
sylibr |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐵 = suc 𝑥 ) → 𝑥 ∈ dom 𝑅1 ) |
| 27 |
|
r1sucg |
⊢ ( 𝑥 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 28 |
26 27
|
syl |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐵 = suc 𝑥 ) → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 29 |
21 28
|
eqtrd |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐵 = suc 𝑥 ) → ( 𝑅1 ‘ 𝐵 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 30 |
19 29
|
eleqtrd |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐵 = suc 𝑥 ) → 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 31 |
|
elpwi |
⊢ ( 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) → 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) ) |
| 32 |
|
sspw |
⊢ ( 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) → 𝒫 𝐴 ⊆ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 33 |
30 31 32
|
3syl |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐵 = suc 𝑥 ) → 𝒫 𝐴 ⊆ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 34 |
33 29
|
sseqtrrd |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐵 = suc 𝑥 ) → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) |
| 35 |
34
|
ex |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( 𝐵 = suc 𝑥 → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) ) |
| 36 |
35
|
rexlimdvw |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( ∃ 𝑥 ∈ On 𝐵 = suc 𝑥 → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) ) |
| 37 |
|
r1tr |
⊢ Tr ( 𝑅1 ‘ 𝐵 ) |
| 38 |
|
simpl |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) → 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ) |
| 39 |
|
r1limg |
⊢ ( ( 𝐵 ∈ dom 𝑅1 ∧ Lim 𝐵 ) → ( 𝑅1 ‘ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝑅1 ‘ 𝑥 ) ) |
| 40 |
7 39
|
sylan |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) → ( 𝑅1 ‘ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝑅1 ‘ 𝑥 ) ) |
| 41 |
38 40
|
eleqtrd |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) → 𝐴 ∈ ∪ 𝑥 ∈ 𝐵 ( 𝑅1 ‘ 𝑥 ) ) |
| 42 |
|
eliun |
⊢ ( 𝐴 ∈ ∪ 𝑥 ∈ 𝐵 ( 𝑅1 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐵 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 43 |
41 42
|
sylib |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) → ∃ 𝑥 ∈ 𝐵 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 44 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → 𝑥 ∈ 𝐵 ) |
| 45 |
|
limsuc |
⊢ ( Lim 𝐵 → ( 𝑥 ∈ 𝐵 ↔ suc 𝑥 ∈ 𝐵 ) ) |
| 46 |
45
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → ( 𝑥 ∈ 𝐵 ↔ suc 𝑥 ∈ 𝐵 ) ) |
| 47 |
44 46
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → suc 𝑥 ∈ 𝐵 ) |
| 48 |
|
limsuc |
⊢ ( Lim 𝐵 → ( suc 𝑥 ∈ 𝐵 ↔ suc suc 𝑥 ∈ 𝐵 ) ) |
| 49 |
48
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → ( suc 𝑥 ∈ 𝐵 ↔ suc suc 𝑥 ∈ 𝐵 ) ) |
| 50 |
47 49
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → suc suc 𝑥 ∈ 𝐵 ) |
| 51 |
|
r1tr |
⊢ Tr ( 𝑅1 ‘ 𝑥 ) |
| 52 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 53 |
|
trss |
⊢ ( Tr ( 𝑅1 ‘ 𝑥 ) → ( 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) → 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 54 |
51 52 53
|
mpsyl |
⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) ) |
| 55 |
54 32
|
syl |
⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → 𝒫 𝐴 ⊆ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 56 |
7
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → 𝐵 ∈ dom 𝑅1 ) |
| 57 |
|
ordtr1 |
⊢ ( Ord dom 𝑅1 → ( ( 𝑥 ∈ 𝐵 ∧ 𝐵 ∈ dom 𝑅1 ) → 𝑥 ∈ dom 𝑅1 ) ) |
| 58 |
4 57
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝐵 ∈ dom 𝑅1 ) → 𝑥 ∈ dom 𝑅1 ) |
| 59 |
44 56 58
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → 𝑥 ∈ dom 𝑅1 ) |
| 60 |
59 27
|
syl |
⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 61 |
55 60
|
sseqtrrd |
⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ suc 𝑥 ) ) |
| 62 |
|
fvex |
⊢ ( 𝑅1 ‘ suc 𝑥 ) ∈ V |
| 63 |
62
|
elpw2 |
⊢ ( 𝒫 𝐴 ∈ 𝒫 ( 𝑅1 ‘ suc 𝑥 ) ↔ 𝒫 𝐴 ⊆ ( 𝑅1 ‘ suc 𝑥 ) ) |
| 64 |
61 63
|
sylibr |
⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → 𝒫 𝐴 ∈ 𝒫 ( 𝑅1 ‘ suc 𝑥 ) ) |
| 65 |
59 25
|
sylib |
⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → suc 𝑥 ∈ dom 𝑅1 ) |
| 66 |
|
r1sucg |
⊢ ( suc 𝑥 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ suc 𝑥 ) ) |
| 67 |
65 66
|
syl |
⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → ( 𝑅1 ‘ suc suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ suc 𝑥 ) ) |
| 68 |
64 67
|
eleqtrrd |
⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc suc 𝑥 ) ) |
| 69 |
|
fveq2 |
⊢ ( 𝑦 = suc suc 𝑥 → ( 𝑅1 ‘ 𝑦 ) = ( 𝑅1 ‘ suc suc 𝑥 ) ) |
| 70 |
69
|
eleq2d |
⊢ ( 𝑦 = suc suc 𝑥 → ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc suc 𝑥 ) ) ) |
| 71 |
70
|
rspcev |
⊢ ( ( suc suc 𝑥 ∈ 𝐵 ∧ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc suc 𝑥 ) ) → ∃ 𝑦 ∈ 𝐵 𝒫 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ) |
| 72 |
50 68 71
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) → ∃ 𝑦 ∈ 𝐵 𝒫 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ) |
| 73 |
43 72
|
rexlimddv |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) → ∃ 𝑦 ∈ 𝐵 𝒫 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ) |
| 74 |
|
eliun |
⊢ ( 𝒫 𝐴 ∈ ∪ 𝑦 ∈ 𝐵 ( 𝑅1 ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐵 𝒫 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ) |
| 75 |
73 74
|
sylibr |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) → 𝒫 𝐴 ∈ ∪ 𝑦 ∈ 𝐵 ( 𝑅1 ‘ 𝑦 ) ) |
| 76 |
|
r1limg |
⊢ ( ( 𝐵 ∈ dom 𝑅1 ∧ Lim 𝐵 ) → ( 𝑅1 ‘ 𝐵 ) = ∪ 𝑦 ∈ 𝐵 ( 𝑅1 ‘ 𝑦 ) ) |
| 77 |
7 76
|
sylan |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) → ( 𝑅1 ‘ 𝐵 ) = ∪ 𝑦 ∈ 𝐵 ( 𝑅1 ‘ 𝑦 ) ) |
| 78 |
75 77
|
eleqtrrd |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) → 𝒫 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ) |
| 79 |
|
trss |
⊢ ( Tr ( 𝑅1 ‘ 𝐵 ) → ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) ) |
| 80 |
37 78 79
|
mpsyl |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ Lim 𝐵 ) → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) |
| 81 |
80
|
ex |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( Lim 𝐵 → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) ) |
| 82 |
81
|
adantld |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( ( 𝐵 ∈ V ∧ Lim 𝐵 ) → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) ) |
| 83 |
18 36 82
|
3jaod |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( ( 𝐵 = ∅ ∨ ∃ 𝑥 ∈ On 𝐵 = suc 𝑥 ∨ ( 𝐵 ∈ V ∧ Lim 𝐵 ) ) → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) ) |
| 84 |
10 83
|
mpd |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) |