Step |
Hyp |
Ref |
Expression |
1 |
|
eleq2 |
⊢ ( 𝑥 = ∅ → ( 𝐵 ∈ 𝑥 ↔ 𝐵 ∈ ∅ ) ) |
2 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ ∅ ) ) |
3 |
2
|
breq2d |
⊢ ( 𝑥 = ∅ → ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ↔ ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ ∅ ) ) ) |
4 |
1 3
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝐵 ∈ 𝑥 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ↔ ( 𝐵 ∈ ∅ → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ ∅ ) ) ) ) |
5 |
|
eleq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∈ 𝑥 ↔ 𝐵 ∈ 𝑦 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) ) |
7 |
6
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ↔ ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ) |
8 |
5 7
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 ∈ 𝑥 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ↔ ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
9 |
|
eleq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 ∈ 𝑥 ↔ 𝐵 ∈ suc 𝑦 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ suc 𝑦 ) ) |
11 |
10
|
breq2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ↔ ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) |
12 |
9 11
|
imbi12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐵 ∈ 𝑥 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ↔ ( 𝐵 ∈ suc 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) ) |
13 |
|
eleq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐵 ∈ 𝑥 ↔ 𝐵 ∈ 𝐴 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝐴 ) ) |
15 |
14
|
breq2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ↔ ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝐴 ) ) ) |
16 |
13 15
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ∈ 𝑥 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ↔ ( 𝐵 ∈ 𝐴 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝐴 ) ) ) ) |
17 |
|
noel |
⊢ ¬ 𝐵 ∈ ∅ |
18 |
17
|
pm2.21i |
⊢ ( 𝐵 ∈ ∅ → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ ∅ ) ) |
19 |
|
elsuci |
⊢ ( 𝐵 ∈ suc 𝑦 → ( 𝐵 ∈ 𝑦 ∨ 𝐵 = 𝑦 ) ) |
20 |
|
sdomtr |
⊢ ( ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ∧ ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) |
21 |
20
|
expcom |
⊢ ( ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) → ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) |
22 |
|
fvex |
⊢ ( 𝑅1 ‘ 𝑦 ) ∈ V |
23 |
22
|
canth2 |
⊢ ( 𝑅1 ‘ 𝑦 ) ≺ 𝒫 ( 𝑅1 ‘ 𝑦 ) |
24 |
|
r1suc |
⊢ ( 𝑦 ∈ On → ( 𝑅1 ‘ suc 𝑦 ) = 𝒫 ( 𝑅1 ‘ 𝑦 ) ) |
25 |
23 24
|
breqtrrid |
⊢ ( 𝑦 ∈ On → ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) |
26 |
21 25
|
syl11 |
⊢ ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) → ( 𝑦 ∈ On → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) |
27 |
26
|
imim2i |
⊢ ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝐵 ∈ 𝑦 → ( 𝑦 ∈ On → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) ) |
28 |
|
fveq2 |
⊢ ( 𝐵 = 𝑦 → ( 𝑅1 ‘ 𝐵 ) = ( 𝑅1 ‘ 𝑦 ) ) |
29 |
28
|
breq1d |
⊢ ( 𝐵 = 𝑦 → ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ↔ ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) |
30 |
25 29
|
syl5ibr |
⊢ ( 𝐵 = 𝑦 → ( 𝑦 ∈ On → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) |
31 |
30
|
a1i |
⊢ ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝐵 = 𝑦 → ( 𝑦 ∈ On → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) ) |
32 |
27 31
|
jaod |
⊢ ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( ( 𝐵 ∈ 𝑦 ∨ 𝐵 = 𝑦 ) → ( 𝑦 ∈ On → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) ) |
33 |
19 32
|
syl5 |
⊢ ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝐵 ∈ suc 𝑦 → ( 𝑦 ∈ On → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) ) |
34 |
33
|
com3r |
⊢ ( 𝑦 ∈ On → ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝐵 ∈ suc 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) ) |
35 |
|
limuni |
⊢ ( Lim 𝑥 → 𝑥 = ∪ 𝑥 ) |
36 |
35
|
eleq2d |
⊢ ( Lim 𝑥 → ( 𝐵 ∈ 𝑥 ↔ 𝐵 ∈ ∪ 𝑥 ) ) |
37 |
|
eluni2 |
⊢ ( 𝐵 ∈ ∪ 𝑥 ↔ ∃ 𝑦 ∈ 𝑥 𝐵 ∈ 𝑦 ) |
38 |
36 37
|
bitrdi |
⊢ ( Lim 𝑥 → ( 𝐵 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝑥 𝐵 ∈ 𝑦 ) ) |
39 |
|
r19.29 |
⊢ ( ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ∧ ∃ 𝑦 ∈ 𝑥 𝐵 ∈ 𝑦 ) → ∃ 𝑦 ∈ 𝑥 ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝐵 ∈ 𝑦 ) ) |
40 |
|
fvex |
⊢ ( 𝑅1 ‘ 𝑥 ) ∈ V |
41 |
|
ssiun2 |
⊢ ( 𝑦 ∈ 𝑥 → ( 𝑅1 ‘ 𝑦 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ) |
42 |
|
vex |
⊢ 𝑥 ∈ V |
43 |
|
r1lim |
⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → ( 𝑅1 ‘ 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ) |
44 |
42 43
|
mpan |
⊢ ( Lim 𝑥 → ( 𝑅1 ‘ 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ) |
45 |
44
|
sseq2d |
⊢ ( Lim 𝑥 → ( ( 𝑅1 ‘ 𝑦 ) ⊆ ( 𝑅1 ‘ 𝑥 ) ↔ ( 𝑅1 ‘ 𝑦 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ) ) |
46 |
41 45
|
syl5ibr |
⊢ ( Lim 𝑥 → ( 𝑦 ∈ 𝑥 → ( 𝑅1 ‘ 𝑦 ) ⊆ ( 𝑅1 ‘ 𝑥 ) ) ) |
47 |
|
ssdomg |
⊢ ( ( 𝑅1 ‘ 𝑥 ) ∈ V → ( ( 𝑅1 ‘ 𝑦 ) ⊆ ( 𝑅1 ‘ 𝑥 ) → ( 𝑅1 ‘ 𝑦 ) ≼ ( 𝑅1 ‘ 𝑥 ) ) ) |
48 |
40 46 47
|
mpsylsyld |
⊢ ( Lim 𝑥 → ( 𝑦 ∈ 𝑥 → ( 𝑅1 ‘ 𝑦 ) ≼ ( 𝑅1 ‘ 𝑥 ) ) ) |
49 |
|
id |
⊢ ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ) |
50 |
49
|
imp |
⊢ ( ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝐵 ∈ 𝑦 ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) |
51 |
|
sdomdomtr |
⊢ ( ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ∧ ( 𝑅1 ‘ 𝑦 ) ≼ ( 𝑅1 ‘ 𝑥 ) ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) |
52 |
51
|
expcom |
⊢ ( ( 𝑅1 ‘ 𝑦 ) ≼ ( 𝑅1 ‘ 𝑥 ) → ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ) |
53 |
50 52
|
syl5 |
⊢ ( ( 𝑅1 ‘ 𝑦 ) ≼ ( 𝑅1 ‘ 𝑥 ) → ( ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝐵 ∈ 𝑦 ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ) |
54 |
48 53
|
syl6 |
⊢ ( Lim 𝑥 → ( 𝑦 ∈ 𝑥 → ( ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝐵 ∈ 𝑦 ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ) ) |
55 |
54
|
rexlimdv |
⊢ ( Lim 𝑥 → ( ∃ 𝑦 ∈ 𝑥 ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝐵 ∈ 𝑦 ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ) |
56 |
39 55
|
syl5 |
⊢ ( Lim 𝑥 → ( ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ∧ ∃ 𝑦 ∈ 𝑥 𝐵 ∈ 𝑦 ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ) |
57 |
56
|
expcomd |
⊢ ( Lim 𝑥 → ( ∃ 𝑦 ∈ 𝑥 𝐵 ∈ 𝑦 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ) ) |
58 |
38 57
|
sylbid |
⊢ ( Lim 𝑥 → ( 𝐵 ∈ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ) ) |
59 |
58
|
com23 |
⊢ ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝐵 ∈ 𝑥 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ) ) |
60 |
4 8 12 16 18 34 59
|
tfinds |
⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ 𝐴 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝐴 ) ) ) |
61 |
60
|
imp |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝐴 ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝐴 ) ) |