Description: The union of a cumulative hierarchy of sets at ordinal A is a subset of the hierarchy at A . JFM CLASSES1 th. 40. (Contributed by FL, 20-Apr-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1tr2 | ⊢ ∪ ( 𝑅1 ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1tr | ⊢ Tr ( 𝑅1 ‘ 𝐴 ) | |
| 2 | df-tr | ⊢ ( Tr ( 𝑅1 ‘ 𝐴 ) ↔ ∪ ( 𝑅1 ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) | |
| 3 | 1 2 | mpbi | ⊢ ∪ ( 𝑅1 ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ 𝐴 ) |