Step |
Hyp |
Ref |
Expression |
1 |
|
df-ne |
⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) |
2 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) |
3 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ On ) |
4 |
|
onwf |
⊢ On ⊆ ∪ ( 𝑅1 “ On ) |
5 |
4
|
sseli |
⊢ ( 𝐴 ∈ On → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
6 |
|
eqid |
⊢ ( rank ‘ 𝐴 ) = ( rank ‘ 𝐴 ) |
7 |
|
rankr1c |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( ( rank ‘ 𝐴 ) = ( rank ‘ 𝐴 ) ↔ ( ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) ) ) |
8 |
6 7
|
mpbii |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) ) |
9 |
5 8
|
syl |
⊢ ( 𝐴 ∈ On → ( ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) ) |
10 |
9
|
simpld |
⊢ ( 𝐴 ∈ On → ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
11 |
|
r1fnon |
⊢ 𝑅1 Fn On |
12 |
11
|
fndmi |
⊢ dom 𝑅1 = On |
13 |
12
|
eleq2i |
⊢ ( 𝐴 ∈ dom 𝑅1 ↔ 𝐴 ∈ On ) |
14 |
|
rankonid |
⊢ ( 𝐴 ∈ dom 𝑅1 ↔ ( rank ‘ 𝐴 ) = 𝐴 ) |
15 |
13 14
|
bitr3i |
⊢ ( 𝐴 ∈ On ↔ ( rank ‘ 𝐴 ) = 𝐴 ) |
16 |
|
fveq2 |
⊢ ( ( rank ‘ 𝐴 ) = 𝐴 → ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) = ( 𝑅1 ‘ 𝐴 ) ) |
17 |
15 16
|
sylbi |
⊢ ( 𝐴 ∈ On → ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) = ( 𝑅1 ‘ 𝐴 ) ) |
18 |
10 17
|
neleqtrd |
⊢ ( 𝐴 ∈ On → ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐴 ) ) |
19 |
18
|
adantl |
⊢ ( ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ∧ 𝐴 ∈ On ) → ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐴 ) ) |
20 |
|
onssr1 |
⊢ ( 𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
21 |
13 20
|
sylbir |
⊢ ( 𝐴 ∈ On → 𝐴 ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
22 |
|
tsken |
⊢ ( ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ∧ 𝐴 ⊆ ( 𝑅1 ‘ 𝐴 ) ) → ( 𝐴 ≈ ( 𝑅1 ‘ 𝐴 ) ∨ 𝐴 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
23 |
21 22
|
sylan2 |
⊢ ( ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ∧ 𝐴 ∈ On ) → ( 𝐴 ≈ ( 𝑅1 ‘ 𝐴 ) ∨ 𝐴 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
24 |
23
|
ord |
⊢ ( ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ∧ 𝐴 ∈ On ) → ( ¬ 𝐴 ≈ ( 𝑅1 ‘ 𝐴 ) → 𝐴 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
25 |
19 24
|
mt3d |
⊢ ( ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ∧ 𝐴 ∈ On ) → 𝐴 ≈ ( 𝑅1 ‘ 𝐴 ) ) |
26 |
2 3 25
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ≈ ( 𝑅1 ‘ 𝐴 ) ) |
27 |
|
carden2b |
⊢ ( 𝐴 ≈ ( 𝑅1 ‘ 𝐴 ) → ( card ‘ 𝐴 ) = ( card ‘ ( 𝑅1 ‘ 𝐴 ) ) ) |
28 |
26 27
|
syl |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → ( card ‘ 𝐴 ) = ( card ‘ ( 𝑅1 ‘ 𝐴 ) ) ) |
29 |
|
simpl |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) → 𝐴 ∈ On ) |
30 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) |
31 |
21
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) → 𝐴 ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
32 |
31
|
sselda |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) |
33 |
|
tsksdom |
⊢ ( ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) → 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) ) |
34 |
30 32 33
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) ) |
35 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ∈ On ) |
36 |
25
|
ensymd |
⊢ ( ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ∧ 𝐴 ∈ On ) → ( 𝑅1 ‘ 𝐴 ) ≈ 𝐴 ) |
37 |
30 35 36
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) ≈ 𝐴 ) |
38 |
|
sdomentr |
⊢ ( ( 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) ∧ ( 𝑅1 ‘ 𝐴 ) ≈ 𝐴 ) → 𝑥 ≺ 𝐴 ) |
39 |
34 37 38
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≺ 𝐴 ) |
40 |
39
|
ralrimiva |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) → ∀ 𝑥 ∈ 𝐴 𝑥 ≺ 𝐴 ) |
41 |
|
iscard |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 ↔ ( 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≺ 𝐴 ) ) |
42 |
29 40 41
|
sylanbrc |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) → ( card ‘ 𝐴 ) = 𝐴 ) |
43 |
42
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → ( card ‘ 𝐴 ) = 𝐴 ) |
44 |
28 43
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → ( card ‘ ( 𝑅1 ‘ 𝐴 ) ) = 𝐴 ) |
45 |
|
r10 |
⊢ ( 𝑅1 ‘ ∅ ) = ∅ |
46 |
|
on0eln0 |
⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
47 |
46
|
biimpar |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) → ∅ ∈ 𝐴 ) |
48 |
|
r1sdom |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( 𝑅1 ‘ ∅ ) ≺ ( 𝑅1 ‘ 𝐴 ) ) |
49 |
47 48
|
syldan |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) → ( 𝑅1 ‘ ∅ ) ≺ ( 𝑅1 ‘ 𝐴 ) ) |
50 |
45 49
|
eqbrtrrid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) → ∅ ≺ ( 𝑅1 ‘ 𝐴 ) ) |
51 |
|
fvex |
⊢ ( 𝑅1 ‘ 𝐴 ) ∈ V |
52 |
51
|
0sdom |
⊢ ( ∅ ≺ ( 𝑅1 ‘ 𝐴 ) ↔ ( 𝑅1 ‘ 𝐴 ) ≠ ∅ ) |
53 |
50 52
|
sylib |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) → ( 𝑅1 ‘ 𝐴 ) ≠ ∅ ) |
54 |
53
|
adantlr |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → ( 𝑅1 ‘ 𝐴 ) ≠ ∅ ) |
55 |
|
tskcard |
⊢ ( ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ∧ ( 𝑅1 ‘ 𝐴 ) ≠ ∅ ) → ( card ‘ ( 𝑅1 ‘ 𝐴 ) ) ∈ Inacc ) |
56 |
2 54 55
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → ( card ‘ ( 𝑅1 ‘ 𝐴 ) ) ∈ Inacc ) |
57 |
44 56
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ Inacc ) |
58 |
57
|
ex |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) → ( 𝐴 ≠ ∅ → 𝐴 ∈ Inacc ) ) |
59 |
1 58
|
syl5bir |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) → ( ¬ 𝐴 = ∅ → 𝐴 ∈ Inacc ) ) |
60 |
59
|
orrd |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) → ( 𝐴 = ∅ ∨ 𝐴 ∈ Inacc ) ) |
61 |
60
|
ex |
⊢ ( 𝐴 ∈ On → ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski → ( 𝐴 = ∅ ∨ 𝐴 ∈ Inacc ) ) ) |
62 |
|
fveq2 |
⊢ ( 𝐴 = ∅ → ( 𝑅1 ‘ 𝐴 ) = ( 𝑅1 ‘ ∅ ) ) |
63 |
62 45
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ( 𝑅1 ‘ 𝐴 ) = ∅ ) |
64 |
|
0tsk |
⊢ ∅ ∈ Tarski |
65 |
63 64
|
eqeltrdi |
⊢ ( 𝐴 = ∅ → ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) |
66 |
|
inatsk |
⊢ ( 𝐴 ∈ Inacc → ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) |
67 |
65 66
|
jaoi |
⊢ ( ( 𝐴 = ∅ ∨ 𝐴 ∈ Inacc ) → ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) |
68 |
61 67
|
impbid1 |
⊢ ( 𝐴 ∈ On → ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ↔ ( 𝐴 = ∅ ∨ 𝐴 ∈ Inacc ) ) ) |