Metamath Proof Explorer


Theorem r1tskina

Description: There is a direct relationship between transitive Tarski classes and inaccessible cardinals: the Tarski classes that occur in the cumulative hierarchy are exactly at the strongly inaccessible cardinals. (Contributed by Mario Carneiro, 8-Jun-2013)

Ref Expression
Assertion r1tskina ( 𝐴 ∈ On → ( ( 𝑅1𝐴 ) ∈ Tarski ↔ ( 𝐴 = ∅ ∨ 𝐴 ∈ Inacc ) ) )

Proof

Step Hyp Ref Expression
1 df-ne ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ )
2 simplr ( ( ( 𝐴 ∈ On ∧ ( 𝑅1𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → ( 𝑅1𝐴 ) ∈ Tarski )
3 simpll ( ( ( 𝐴 ∈ On ∧ ( 𝑅1𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ On )
4 onwf On ⊆ ( 𝑅1 “ On )
5 4 sseli ( 𝐴 ∈ On → 𝐴 ( 𝑅1 “ On ) )
6 eqid ( rank ‘ 𝐴 ) = ( rank ‘ 𝐴 )
7 rankr1c ( 𝐴 ( 𝑅1 “ On ) → ( ( rank ‘ 𝐴 ) = ( rank ‘ 𝐴 ) ↔ ( ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) ) )
8 6 7 mpbii ( 𝐴 ( 𝑅1 “ On ) → ( ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) )
9 5 8 syl ( 𝐴 ∈ On → ( ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) )
10 9 simpld ( 𝐴 ∈ On → ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) )
11 r1fnon 𝑅1 Fn On
12 11 fndmi dom 𝑅1 = On
13 12 eleq2i ( 𝐴 ∈ dom 𝑅1𝐴 ∈ On )
14 rankonid ( 𝐴 ∈ dom 𝑅1 ↔ ( rank ‘ 𝐴 ) = 𝐴 )
15 13 14 bitr3i ( 𝐴 ∈ On ↔ ( rank ‘ 𝐴 ) = 𝐴 )
16 fveq2 ( ( rank ‘ 𝐴 ) = 𝐴 → ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) = ( 𝑅1𝐴 ) )
17 15 16 sylbi ( 𝐴 ∈ On → ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) = ( 𝑅1𝐴 ) )
18 10 17 neleqtrd ( 𝐴 ∈ On → ¬ 𝐴 ∈ ( 𝑅1𝐴 ) )
19 18 adantl ( ( ( 𝑅1𝐴 ) ∈ Tarski ∧ 𝐴 ∈ On ) → ¬ 𝐴 ∈ ( 𝑅1𝐴 ) )
20 onssr1 ( 𝐴 ∈ dom 𝑅1𝐴 ⊆ ( 𝑅1𝐴 ) )
21 13 20 sylbir ( 𝐴 ∈ On → 𝐴 ⊆ ( 𝑅1𝐴 ) )
22 tsken ( ( ( 𝑅1𝐴 ) ∈ Tarski ∧ 𝐴 ⊆ ( 𝑅1𝐴 ) ) → ( 𝐴 ≈ ( 𝑅1𝐴 ) ∨ 𝐴 ∈ ( 𝑅1𝐴 ) ) )
23 21 22 sylan2 ( ( ( 𝑅1𝐴 ) ∈ Tarski ∧ 𝐴 ∈ On ) → ( 𝐴 ≈ ( 𝑅1𝐴 ) ∨ 𝐴 ∈ ( 𝑅1𝐴 ) ) )
24 23 ord ( ( ( 𝑅1𝐴 ) ∈ Tarski ∧ 𝐴 ∈ On ) → ( ¬ 𝐴 ≈ ( 𝑅1𝐴 ) → 𝐴 ∈ ( 𝑅1𝐴 ) ) )
25 19 24 mt3d ( ( ( 𝑅1𝐴 ) ∈ Tarski ∧ 𝐴 ∈ On ) → 𝐴 ≈ ( 𝑅1𝐴 ) )
26 2 3 25 syl2anc ( ( ( 𝐴 ∈ On ∧ ( 𝑅1𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ≈ ( 𝑅1𝐴 ) )
27 carden2b ( 𝐴 ≈ ( 𝑅1𝐴 ) → ( card ‘ 𝐴 ) = ( card ‘ ( 𝑅1𝐴 ) ) )
28 26 27 syl ( ( ( 𝐴 ∈ On ∧ ( 𝑅1𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → ( card ‘ 𝐴 ) = ( card ‘ ( 𝑅1𝐴 ) ) )
29 simpl ( ( 𝐴 ∈ On ∧ ( 𝑅1𝐴 ) ∈ Tarski ) → 𝐴 ∈ On )
30 simplr ( ( ( 𝐴 ∈ On ∧ ( 𝑅1𝐴 ) ∈ Tarski ) ∧ 𝑥𝐴 ) → ( 𝑅1𝐴 ) ∈ Tarski )
31 21 adantr ( ( 𝐴 ∈ On ∧ ( 𝑅1𝐴 ) ∈ Tarski ) → 𝐴 ⊆ ( 𝑅1𝐴 ) )
32 31 sselda ( ( ( 𝐴 ∈ On ∧ ( 𝑅1𝐴 ) ∈ Tarski ) ∧ 𝑥𝐴 ) → 𝑥 ∈ ( 𝑅1𝐴 ) )
33 tsksdom ( ( ( 𝑅1𝐴 ) ∈ Tarski ∧ 𝑥 ∈ ( 𝑅1𝐴 ) ) → 𝑥 ≺ ( 𝑅1𝐴 ) )
34 30 32 33 syl2anc ( ( ( 𝐴 ∈ On ∧ ( 𝑅1𝐴 ) ∈ Tarski ) ∧ 𝑥𝐴 ) → 𝑥 ≺ ( 𝑅1𝐴 ) )
35 simpll ( ( ( 𝐴 ∈ On ∧ ( 𝑅1𝐴 ) ∈ Tarski ) ∧ 𝑥𝐴 ) → 𝐴 ∈ On )
36 25 ensymd ( ( ( 𝑅1𝐴 ) ∈ Tarski ∧ 𝐴 ∈ On ) → ( 𝑅1𝐴 ) ≈ 𝐴 )
37 30 35 36 syl2anc ( ( ( 𝐴 ∈ On ∧ ( 𝑅1𝐴 ) ∈ Tarski ) ∧ 𝑥𝐴 ) → ( 𝑅1𝐴 ) ≈ 𝐴 )
38 sdomentr ( ( 𝑥 ≺ ( 𝑅1𝐴 ) ∧ ( 𝑅1𝐴 ) ≈ 𝐴 ) → 𝑥𝐴 )
39 34 37 38 syl2anc ( ( ( 𝐴 ∈ On ∧ ( 𝑅1𝐴 ) ∈ Tarski ) ∧ 𝑥𝐴 ) → 𝑥𝐴 )
40 39 ralrimiva ( ( 𝐴 ∈ On ∧ ( 𝑅1𝐴 ) ∈ Tarski ) → ∀ 𝑥𝐴 𝑥𝐴 )
41 iscard ( ( card ‘ 𝐴 ) = 𝐴 ↔ ( 𝐴 ∈ On ∧ ∀ 𝑥𝐴 𝑥𝐴 ) )
42 29 40 41 sylanbrc ( ( 𝐴 ∈ On ∧ ( 𝑅1𝐴 ) ∈ Tarski ) → ( card ‘ 𝐴 ) = 𝐴 )
43 42 adantr ( ( ( 𝐴 ∈ On ∧ ( 𝑅1𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → ( card ‘ 𝐴 ) = 𝐴 )
44 28 43 eqtr3d ( ( ( 𝐴 ∈ On ∧ ( 𝑅1𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → ( card ‘ ( 𝑅1𝐴 ) ) = 𝐴 )
45 r10 ( 𝑅1 ‘ ∅ ) = ∅
46 on0eln0 ( 𝐴 ∈ On → ( ∅ ∈ 𝐴𝐴 ≠ ∅ ) )
47 46 biimpar ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) → ∅ ∈ 𝐴 )
48 r1sdom ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( 𝑅1 ‘ ∅ ) ≺ ( 𝑅1𝐴 ) )
49 47 48 syldan ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) → ( 𝑅1 ‘ ∅ ) ≺ ( 𝑅1𝐴 ) )
50 45 49 eqbrtrrid ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) → ∅ ≺ ( 𝑅1𝐴 ) )
51 fvex ( 𝑅1𝐴 ) ∈ V
52 51 0sdom ( ∅ ≺ ( 𝑅1𝐴 ) ↔ ( 𝑅1𝐴 ) ≠ ∅ )
53 50 52 sylib ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) → ( 𝑅1𝐴 ) ≠ ∅ )
54 53 adantlr ( ( ( 𝐴 ∈ On ∧ ( 𝑅1𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → ( 𝑅1𝐴 ) ≠ ∅ )
55 tskcard ( ( ( 𝑅1𝐴 ) ∈ Tarski ∧ ( 𝑅1𝐴 ) ≠ ∅ ) → ( card ‘ ( 𝑅1𝐴 ) ) ∈ Inacc )
56 2 54 55 syl2anc ( ( ( 𝐴 ∈ On ∧ ( 𝑅1𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → ( card ‘ ( 𝑅1𝐴 ) ) ∈ Inacc )
57 44 56 eqeltrrd ( ( ( 𝐴 ∈ On ∧ ( 𝑅1𝐴 ) ∈ Tarski ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ Inacc )
58 57 ex ( ( 𝐴 ∈ On ∧ ( 𝑅1𝐴 ) ∈ Tarski ) → ( 𝐴 ≠ ∅ → 𝐴 ∈ Inacc ) )
59 1 58 syl5bir ( ( 𝐴 ∈ On ∧ ( 𝑅1𝐴 ) ∈ Tarski ) → ( ¬ 𝐴 = ∅ → 𝐴 ∈ Inacc ) )
60 59 orrd ( ( 𝐴 ∈ On ∧ ( 𝑅1𝐴 ) ∈ Tarski ) → ( 𝐴 = ∅ ∨ 𝐴 ∈ Inacc ) )
61 60 ex ( 𝐴 ∈ On → ( ( 𝑅1𝐴 ) ∈ Tarski → ( 𝐴 = ∅ ∨ 𝐴 ∈ Inacc ) ) )
62 fveq2 ( 𝐴 = ∅ → ( 𝑅1𝐴 ) = ( 𝑅1 ‘ ∅ ) )
63 62 45 eqtrdi ( 𝐴 = ∅ → ( 𝑅1𝐴 ) = ∅ )
64 0tsk ∅ ∈ Tarski
65 63 64 eqeltrdi ( 𝐴 = ∅ → ( 𝑅1𝐴 ) ∈ Tarski )
66 inatsk ( 𝐴 ∈ Inacc → ( 𝑅1𝐴 ) ∈ Tarski )
67 65 66 jaoi ( ( 𝐴 = ∅ ∨ 𝐴 ∈ Inacc ) → ( 𝑅1𝐴 ) ∈ Tarski )
68 61 67 impbid1 ( 𝐴 ∈ On → ( ( 𝑅1𝐴 ) ∈ Tarski ↔ ( 𝐴 = ∅ ∨ 𝐴 ∈ Inacc ) ) )