Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = ∅ ) → 𝐴 = ∅ ) |
2 |
1
|
fveq2d |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = ∅ ) → ( 𝑅1 ‘ 𝐴 ) = ( 𝑅1 ‘ ∅ ) ) |
3 |
|
r10 |
⊢ ( 𝑅1 ‘ ∅ ) = ∅ |
4 |
2 3
|
eqtrdi |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = ∅ ) → ( 𝑅1 ‘ 𝐴 ) = ∅ ) |
5 |
|
0ss |
⊢ ∅ ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) |
6 |
5
|
a1i |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = ∅ ) → ∅ ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
7 |
4 6
|
eqsstrd |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = ∅ ) → ( 𝑅1 ‘ 𝐴 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
8 |
|
nfv |
⊢ Ⅎ 𝑥 𝐴 ∈ dom 𝑅1 |
9 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝑅1 ‘ 𝐴 ) |
10 |
|
nfiu1 |
⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) |
11 |
9 10
|
nfss |
⊢ Ⅎ 𝑥 ( 𝑅1 ‘ 𝐴 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) |
12 |
|
simpr |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = suc 𝑥 ) → 𝐴 = suc 𝑥 ) |
13 |
12
|
fveq2d |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = suc 𝑥 ) → ( 𝑅1 ‘ 𝐴 ) = ( 𝑅1 ‘ suc 𝑥 ) ) |
14 |
|
eleq1 |
⊢ ( 𝐴 = suc 𝑥 → ( 𝐴 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1 ) ) |
15 |
14
|
biimpac |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = suc 𝑥 ) → suc 𝑥 ∈ dom 𝑅1 ) |
16 |
|
r1funlim |
⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) |
17 |
16
|
simpri |
⊢ Lim dom 𝑅1 |
18 |
|
limsuc |
⊢ ( Lim dom 𝑅1 → ( 𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1 ) ) |
19 |
17 18
|
ax-mp |
⊢ ( 𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1 ) |
20 |
15 19
|
sylibr |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = suc 𝑥 ) → 𝑥 ∈ dom 𝑅1 ) |
21 |
|
r1sucg |
⊢ ( 𝑥 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
22 |
20 21
|
syl |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = suc 𝑥 ) → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
23 |
13 22
|
eqtrd |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = suc 𝑥 ) → ( 𝑅1 ‘ 𝐴 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
24 |
|
vex |
⊢ 𝑥 ∈ V |
25 |
24
|
sucid |
⊢ 𝑥 ∈ suc 𝑥 |
26 |
25 12
|
eleqtrrid |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = suc 𝑥 ) → 𝑥 ∈ 𝐴 ) |
27 |
|
ssiun2 |
⊢ ( 𝑥 ∈ 𝐴 → 𝒫 ( 𝑅1 ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
28 |
26 27
|
syl |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = suc 𝑥 ) → 𝒫 ( 𝑅1 ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
29 |
23 28
|
eqsstrd |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝐴 = suc 𝑥 ) → ( 𝑅1 ‘ 𝐴 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
30 |
29
|
ex |
⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝐴 = suc 𝑥 → ( 𝑅1 ‘ 𝐴 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) ) |
31 |
30
|
a1d |
⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝑥 ∈ On → ( 𝐴 = suc 𝑥 → ( 𝑅1 ‘ 𝐴 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) ) ) |
32 |
8 11 31
|
rexlimd |
⊢ ( 𝐴 ∈ dom 𝑅1 → ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → ( 𝑅1 ‘ 𝐴 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) ) |
33 |
32
|
imp |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) → ( 𝑅1 ‘ 𝐴 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
34 |
|
r1limg |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ) |
35 |
|
r1tr |
⊢ Tr ( 𝑅1 ‘ 𝑥 ) |
36 |
|
dftr4 |
⊢ ( Tr ( 𝑅1 ‘ 𝑥 ) ↔ ( 𝑅1 ‘ 𝑥 ) ⊆ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
37 |
35 36
|
mpbi |
⊢ ( 𝑅1 ‘ 𝑥 ) ⊆ 𝒫 ( 𝑅1 ‘ 𝑥 ) |
38 |
37
|
a1i |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴 ) → ( 𝑅1 ‘ 𝑥 ) ⊆ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
39 |
38
|
ralrimivw |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴 ) → ∀ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ⊆ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
40 |
|
ss2iun |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ⊆ 𝒫 ( 𝑅1 ‘ 𝑥 ) → ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
41 |
39 40
|
syl |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴 ) → ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
42 |
34 41
|
eqsstrd |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
43 |
42
|
adantrl |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) → ( 𝑅1 ‘ 𝐴 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
44 |
|
limord |
⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) |
45 |
17 44
|
ax-mp |
⊢ Ord dom 𝑅1 |
46 |
|
ordsson |
⊢ ( Ord dom 𝑅1 → dom 𝑅1 ⊆ On ) |
47 |
45 46
|
ax-mp |
⊢ dom 𝑅1 ⊆ On |
48 |
47
|
sseli |
⊢ ( 𝐴 ∈ dom 𝑅1 → 𝐴 ∈ On ) |
49 |
|
onzsl |
⊢ ( 𝐴 ∈ On ↔ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
50 |
48 49
|
sylib |
⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
51 |
7 33 43 50
|
mpjao3dan |
⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ⊆ ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
52 |
|
ordtr1 |
⊢ ( Ord dom 𝑅1 → ( ( 𝑥 ∈ 𝐴 ∧ 𝐴 ∈ dom 𝑅1 ) → 𝑥 ∈ dom 𝑅1 ) ) |
53 |
45 52
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐴 ∈ dom 𝑅1 ) → 𝑥 ∈ dom 𝑅1 ) |
54 |
53
|
ancoms |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ dom 𝑅1 ) |
55 |
54 21
|
syl |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
56 |
|
simpr |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
57 |
|
ordelord |
⊢ ( ( Ord dom 𝑅1 ∧ 𝐴 ∈ dom 𝑅1 ) → Ord 𝐴 ) |
58 |
45 57
|
mpan |
⊢ ( 𝐴 ∈ dom 𝑅1 → Ord 𝐴 ) |
59 |
58
|
adantr |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → Ord 𝐴 ) |
60 |
|
ordelsuc |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ Ord 𝐴 ) → ( 𝑥 ∈ 𝐴 ↔ suc 𝑥 ⊆ 𝐴 ) ) |
61 |
56 59 60
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 ↔ suc 𝑥 ⊆ 𝐴 ) ) |
62 |
56 61
|
mpbid |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → suc 𝑥 ⊆ 𝐴 ) |
63 |
54 19
|
sylib |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → suc 𝑥 ∈ dom 𝑅1 ) |
64 |
|
simpl |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ∈ dom 𝑅1 ) |
65 |
|
r1ord3g |
⊢ ( ( suc 𝑥 ∈ dom 𝑅1 ∧ 𝐴 ∈ dom 𝑅1 ) → ( suc 𝑥 ⊆ 𝐴 → ( 𝑅1 ‘ suc 𝑥 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) ) |
66 |
63 64 65
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → ( suc 𝑥 ⊆ 𝐴 → ( 𝑅1 ‘ suc 𝑥 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) ) |
67 |
62 66
|
mpd |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅1 ‘ suc 𝑥 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
68 |
55 67
|
eqsstrrd |
⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → 𝒫 ( 𝑅1 ‘ 𝑥 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
69 |
68
|
ralrimiva |
⊢ ( 𝐴 ∈ dom 𝑅1 → ∀ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
70 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
71 |
69 70
|
sylibr |
⊢ ( 𝐴 ∈ dom 𝑅1 → ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
72 |
51 71
|
eqssd |
⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |