Step |
Hyp |
Ref |
Expression |
1 |
|
r1fnon |
⊢ 𝑅1 Fn On |
2 |
1
|
fndmi |
⊢ dom 𝑅1 = On |
3 |
2
|
eleq2i |
⊢ ( 𝐴 ∈ dom 𝑅1 ↔ 𝐴 ∈ On ) |
4 |
|
r1val1 |
⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
5 |
3 4
|
sylbir |
⊢ ( 𝐴 ∈ On → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
6 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ On ) |
7 |
|
r1val2 |
⊢ ( 𝑥 ∈ On → ( 𝑅1 ‘ 𝑥 ) = { 𝑦 ∣ ( rank ‘ 𝑦 ) ∈ 𝑥 } ) |
8 |
6 7
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅1 ‘ 𝑥 ) = { 𝑦 ∣ ( rank ‘ 𝑦 ) ∈ 𝑥 } ) |
9 |
8
|
pweqd |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ 𝐴 ) → 𝒫 ( 𝑅1 ‘ 𝑥 ) = 𝒫 { 𝑦 ∣ ( rank ‘ 𝑦 ) ∈ 𝑥 } ) |
10 |
9
|
iuneq2dv |
⊢ ( 𝐴 ∈ On → ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) = ∪ 𝑥 ∈ 𝐴 𝒫 { 𝑦 ∣ ( rank ‘ 𝑦 ) ∈ 𝑥 } ) |
11 |
5 10
|
eqtrd |
⊢ ( 𝐴 ∈ On → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 𝒫 { 𝑦 ∣ ( rank ‘ 𝑦 ) ∈ 𝑥 } ) |