| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1fnon |
⊢ 𝑅1 Fn On |
| 2 |
1
|
fndmi |
⊢ dom 𝑅1 = On |
| 3 |
2
|
eleq2i |
⊢ ( 𝐴 ∈ dom 𝑅1 ↔ 𝐴 ∈ On ) |
| 4 |
|
r1val1 |
⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 5 |
3 4
|
sylbir |
⊢ ( 𝐴 ∈ On → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 6 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ On ) |
| 7 |
|
r1val2 |
⊢ ( 𝑥 ∈ On → ( 𝑅1 ‘ 𝑥 ) = { 𝑦 ∣ ( rank ‘ 𝑦 ) ∈ 𝑥 } ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅1 ‘ 𝑥 ) = { 𝑦 ∣ ( rank ‘ 𝑦 ) ∈ 𝑥 } ) |
| 9 |
8
|
pweqd |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ 𝐴 ) → 𝒫 ( 𝑅1 ‘ 𝑥 ) = 𝒫 { 𝑦 ∣ ( rank ‘ 𝑦 ) ∈ 𝑥 } ) |
| 10 |
9
|
iuneq2dv |
⊢ ( 𝐴 ∈ On → ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) = ∪ 𝑥 ∈ 𝐴 𝒫 { 𝑦 ∣ ( rank ‘ 𝑦 ) ∈ 𝑥 } ) |
| 11 |
5 10
|
eqtrd |
⊢ ( 𝐴 ∈ On → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 𝒫 { 𝑦 ∣ ( rank ‘ 𝑦 ) ∈ 𝑥 } ) |