Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) |
2 |
1
|
wun0 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ∅ ∈ ( 𝑅1 ‘ 𝐴 ) ) |
3 |
|
elfvdm |
⊢ ( ∅ ∈ ( 𝑅1 ‘ 𝐴 ) → 𝐴 ∈ dom 𝑅1 ) |
4 |
2 3
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → 𝐴 ∈ dom 𝑅1 ) |
5 |
|
r1fnon |
⊢ 𝑅1 Fn On |
6 |
5
|
fndmi |
⊢ dom 𝑅1 = On |
7 |
4 6
|
eleqtrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → 𝐴 ∈ On ) |
8 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
9 |
7 8
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → Ord 𝐴 ) |
10 |
|
n0i |
⊢ ( ∅ ∈ ( 𝑅1 ‘ 𝐴 ) → ¬ ( 𝑅1 ‘ 𝐴 ) = ∅ ) |
11 |
2 10
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ¬ ( 𝑅1 ‘ 𝐴 ) = ∅ ) |
12 |
|
fveq2 |
⊢ ( 𝐴 = ∅ → ( 𝑅1 ‘ 𝐴 ) = ( 𝑅1 ‘ ∅ ) ) |
13 |
|
r10 |
⊢ ( 𝑅1 ‘ ∅ ) = ∅ |
14 |
12 13
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ( 𝑅1 ‘ 𝐴 ) = ∅ ) |
15 |
11 14
|
nsyl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ¬ 𝐴 = ∅ ) |
16 |
|
suceloni |
⊢ ( 𝐴 ∈ On → suc 𝐴 ∈ On ) |
17 |
7 16
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → suc 𝐴 ∈ On ) |
18 |
|
sucidg |
⊢ ( 𝐴 ∈ On → 𝐴 ∈ suc 𝐴 ) |
19 |
7 18
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → 𝐴 ∈ suc 𝐴 ) |
20 |
|
r1ord |
⊢ ( suc 𝐴 ∈ On → ( 𝐴 ∈ suc 𝐴 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝐴 ) ) ) |
21 |
17 19 20
|
sylc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝐴 ) ) |
22 |
|
r1elwf |
⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) ∈ ∪ ( 𝑅1 “ On ) ) |
23 |
|
wfelirr |
⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ ∪ ( 𝑅1 “ On ) → ¬ ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝐴 ) ) |
24 |
21 22 23
|
3syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ¬ ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝐴 ) ) |
25 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → 𝐴 = suc 𝑥 ) |
26 |
25
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → ( 𝑅1 ‘ 𝐴 ) = ( 𝑅1 ‘ suc 𝑥 ) ) |
27 |
|
r1suc |
⊢ ( 𝑥 ∈ On → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
28 |
27
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
29 |
26 28
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → ( 𝑅1 ‘ 𝐴 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
30 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) |
31 |
7
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → 𝐴 ∈ On ) |
32 |
|
sucidg |
⊢ ( 𝑥 ∈ On → 𝑥 ∈ suc 𝑥 ) |
33 |
32
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → 𝑥 ∈ suc 𝑥 ) |
34 |
33 25
|
eleqtrrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → 𝑥 ∈ 𝐴 ) |
35 |
|
r1ord |
⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ 𝐴 → ( 𝑅1 ‘ 𝑥 ) ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
36 |
31 34 35
|
sylc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → ( 𝑅1 ‘ 𝑥 ) ∈ ( 𝑅1 ‘ 𝐴 ) ) |
37 |
30 36
|
wunpw |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → 𝒫 ( 𝑅1 ‘ 𝑥 ) ∈ ( 𝑅1 ‘ 𝐴 ) ) |
38 |
29 37
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝐴 ) ) |
39 |
38
|
rexlimdvaa |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
40 |
24 39
|
mtod |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) |
41 |
|
ioran |
⊢ ( ¬ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ↔ ( ¬ 𝐴 = ∅ ∧ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) |
42 |
15 40 41
|
sylanbrc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ¬ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) |
43 |
|
dflim3 |
⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ¬ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ) |
44 |
9 42 43
|
sylanbrc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → Lim 𝐴 ) |
45 |
|
r1limwun |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) |
46 |
44 45
|
impbida |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑅1 ‘ 𝐴 ) ∈ WUni ↔ Lim 𝐴 ) ) |