| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) |
| 2 |
1
|
wun0 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ∅ ∈ ( 𝑅1 ‘ 𝐴 ) ) |
| 3 |
|
elfvdm |
⊢ ( ∅ ∈ ( 𝑅1 ‘ 𝐴 ) → 𝐴 ∈ dom 𝑅1 ) |
| 4 |
2 3
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → 𝐴 ∈ dom 𝑅1 ) |
| 5 |
|
r1fnon |
⊢ 𝑅1 Fn On |
| 6 |
5
|
fndmi |
⊢ dom 𝑅1 = On |
| 7 |
4 6
|
eleqtrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → 𝐴 ∈ On ) |
| 8 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
| 9 |
7 8
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → Ord 𝐴 ) |
| 10 |
|
n0i |
⊢ ( ∅ ∈ ( 𝑅1 ‘ 𝐴 ) → ¬ ( 𝑅1 ‘ 𝐴 ) = ∅ ) |
| 11 |
2 10
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ¬ ( 𝑅1 ‘ 𝐴 ) = ∅ ) |
| 12 |
|
fveq2 |
⊢ ( 𝐴 = ∅ → ( 𝑅1 ‘ 𝐴 ) = ( 𝑅1 ‘ ∅ ) ) |
| 13 |
|
r10 |
⊢ ( 𝑅1 ‘ ∅ ) = ∅ |
| 14 |
12 13
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ( 𝑅1 ‘ 𝐴 ) = ∅ ) |
| 15 |
11 14
|
nsyl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ¬ 𝐴 = ∅ ) |
| 16 |
|
onsuc |
⊢ ( 𝐴 ∈ On → suc 𝐴 ∈ On ) |
| 17 |
7 16
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → suc 𝐴 ∈ On ) |
| 18 |
|
sucidg |
⊢ ( 𝐴 ∈ On → 𝐴 ∈ suc 𝐴 ) |
| 19 |
7 18
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → 𝐴 ∈ suc 𝐴 ) |
| 20 |
|
r1ord |
⊢ ( suc 𝐴 ∈ On → ( 𝐴 ∈ suc 𝐴 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝐴 ) ) ) |
| 21 |
17 19 20
|
sylc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝐴 ) ) |
| 22 |
|
r1elwf |
⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) ∈ ∪ ( 𝑅1 “ On ) ) |
| 23 |
|
wfelirr |
⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ ∪ ( 𝑅1 “ On ) → ¬ ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝐴 ) ) |
| 24 |
21 22 23
|
3syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ¬ ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝐴 ) ) |
| 25 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → 𝐴 = suc 𝑥 ) |
| 26 |
25
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → ( 𝑅1 ‘ 𝐴 ) = ( 𝑅1 ‘ suc 𝑥 ) ) |
| 27 |
|
r1suc |
⊢ ( 𝑥 ∈ On → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 28 |
27
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 29 |
26 28
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → ( 𝑅1 ‘ 𝐴 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 30 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) |
| 31 |
7
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → 𝐴 ∈ On ) |
| 32 |
|
sucidg |
⊢ ( 𝑥 ∈ On → 𝑥 ∈ suc 𝑥 ) |
| 33 |
32
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → 𝑥 ∈ suc 𝑥 ) |
| 34 |
33 25
|
eleqtrrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → 𝑥 ∈ 𝐴 ) |
| 35 |
|
r1ord |
⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ 𝐴 → ( 𝑅1 ‘ 𝑥 ) ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 36 |
31 34 35
|
sylc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → ( 𝑅1 ‘ 𝑥 ) ∈ ( 𝑅1 ‘ 𝐴 ) ) |
| 37 |
30 36
|
wunpw |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → 𝒫 ( 𝑅1 ‘ 𝑥 ) ∈ ( 𝑅1 ‘ 𝐴 ) ) |
| 38 |
29 37
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝐴 ) ) |
| 39 |
38
|
rexlimdvaa |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 40 |
24 39
|
mtod |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) |
| 41 |
|
ioran |
⊢ ( ¬ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ↔ ( ¬ 𝐴 = ∅ ∧ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) |
| 42 |
15 40 41
|
sylanbrc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ¬ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) |
| 43 |
|
dflim3 |
⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ¬ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ) |
| 44 |
9 42 43
|
sylanbrc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → Lim 𝐴 ) |
| 45 |
|
r1limwun |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) |
| 46 |
44 45
|
impbida |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑅1 ‘ 𝐴 ) ∈ WUni ↔ Lim 𝐴 ) ) |