Metamath Proof Explorer


Theorem r2al

Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020)

Ref Expression
Assertion r2al ( ∀ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) → 𝜑 ) )

Proof

Step Hyp Ref Expression
1 19.21v ( ∀ 𝑦 ( 𝑥𝐴 → ( 𝑦𝐵𝜑 ) ) ↔ ( 𝑥𝐴 → ∀ 𝑦 ( 𝑦𝐵𝜑 ) ) )
2 1 r2allem ( ∀ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) → 𝜑 ) )