Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
r2al
Metamath Proof Explorer
Description: Double restricted universal quantification. (Contributed by NM , 19-Nov-1995) Reduce dependencies on axioms. (Revised by Wolf Lammen , 9-Jan-2020)
Ref
Expression
Assertion
r2al
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) )
Proof
Step
Hyp
Ref
Expression
1
19.21v
⊢ ( ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝜑 ) ) )
2
1
r2allem
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) )