Metamath Proof Explorer


Theorem r2alf

Description: Double restricted universal quantification. (Contributed by Mario Carneiro, 14-Oct-2016) Use r2allem . (Revised by Wolf Lammen, 9-Jan-2020)

Ref Expression
Hypothesis r2alf.1 𝑦 𝐴
Assertion r2alf ( ∀ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) → 𝜑 ) )

Proof

Step Hyp Ref Expression
1 r2alf.1 𝑦 𝐴
2 1 nfcri 𝑦 𝑥𝐴
3 2 19.21 ( ∀ 𝑦 ( 𝑥𝐴 → ( 𝑦𝐵𝜑 ) ) ↔ ( 𝑥𝐴 → ∀ 𝑦 ( 𝑦𝐵𝜑 ) ) )
4 3 r2allem ( ∀ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) → 𝜑 ) )