Step |
Hyp |
Ref |
Expression |
1 |
|
r2allem.1 |
⊢ ( ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ) |
2 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 𝜑 ) ) |
3 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ) |
4 |
3
|
albii |
⊢ ( ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) ↔ ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ) |
5 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝜑 ) ) |
6 |
5
|
imbi2i |
⊢ ( ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ) |
7 |
1 4 6
|
3bitr4i |
⊢ ( ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 𝜑 ) ) |
8 |
7
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 𝜑 ) ) |
9 |
2 8
|
bitr4i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) ) |