Metamath Proof Explorer


Theorem r2allem

Description: Lemma factoring out common proof steps of r2alf and r2al . Introduced to reduce dependencies on axioms. (Contributed by Wolf Lammen, 9-Jan-2020)

Ref Expression
Hypothesis r2allem.1 ( ∀ 𝑦 ( 𝑥𝐴 → ( 𝑦𝐵𝜑 ) ) ↔ ( 𝑥𝐴 → ∀ 𝑦 ( 𝑦𝐵𝜑 ) ) )
Assertion r2allem ( ∀ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) → 𝜑 ) )

Proof

Step Hyp Ref Expression
1 r2allem.1 ( ∀ 𝑦 ( 𝑥𝐴 → ( 𝑦𝐵𝜑 ) ) ↔ ( 𝑥𝐴 → ∀ 𝑦 ( 𝑦𝐵𝜑 ) ) )
2 df-ral ( ∀ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑦𝐵 𝜑 ) )
3 impexp ( ( ( 𝑥𝐴𝑦𝐵 ) → 𝜑 ) ↔ ( 𝑥𝐴 → ( 𝑦𝐵𝜑 ) ) )
4 3 albii ( ∀ 𝑦 ( ( 𝑥𝐴𝑦𝐵 ) → 𝜑 ) ↔ ∀ 𝑦 ( 𝑥𝐴 → ( 𝑦𝐵𝜑 ) ) )
5 df-ral ( ∀ 𝑦𝐵 𝜑 ↔ ∀ 𝑦 ( 𝑦𝐵𝜑 ) )
6 5 imbi2i ( ( 𝑥𝐴 → ∀ 𝑦𝐵 𝜑 ) ↔ ( 𝑥𝐴 → ∀ 𝑦 ( 𝑦𝐵𝜑 ) ) )
7 1 4 6 3bitr4i ( ∀ 𝑦 ( ( 𝑥𝐴𝑦𝐵 ) → 𝜑 ) ↔ ( 𝑥𝐴 → ∀ 𝑦𝐵 𝜑 ) )
8 7 albii ( ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑦𝐵 𝜑 ) )
9 2 8 bitr4i ( ∀ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) → 𝜑 ) )