Metamath Proof Explorer


Theorem r2exf

Description: Double restricted existential quantification. (Contributed by Mario Carneiro, 14-Oct-2016) Use r2exlem . (Revised by Wolf Lammen, 10-Jan-2020)

Ref Expression
Hypothesis r2exf.1 𝑦 𝐴
Assertion r2exf ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∃ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 r2exf.1 𝑦 𝐴
2 1 r2alf ( ∀ 𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) → ¬ 𝜑 ) )
3 2 r2exlem ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∃ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) )