Metamath Proof Explorer


Theorem r2exlem

Description: Lemma factoring out common proof steps in r2exf an r2ex . Introduced to reduce dependencies on axioms. (Contributed by Wolf Lammen, 10-Jan-2020)

Ref Expression
Hypothesis r2exlem.1 ( ∀ 𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) → ¬ 𝜑 ) )
Assertion r2exlem ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∃ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 r2exlem.1 ( ∀ 𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) → ¬ 𝜑 ) )
2 exnal ( ∃ 𝑥 ¬ ∀ 𝑦 ( ( 𝑥𝐴𝑦𝐵 ) → ¬ 𝜑 ) ↔ ¬ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) → ¬ 𝜑 ) )
3 2 1 xchbinxr ( ∃ 𝑥 ¬ ∀ 𝑦 ( ( 𝑥𝐴𝑦𝐵 ) → ¬ 𝜑 ) ↔ ¬ ∀ 𝑥𝐴𝑦𝐵 ¬ 𝜑 )
4 exnalimn ( ∃ 𝑦 ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ↔ ¬ ∀ 𝑦 ( ( 𝑥𝐴𝑦𝐵 ) → ¬ 𝜑 ) )
5 4 exbii ( ∃ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ↔ ∃ 𝑥 ¬ ∀ 𝑦 ( ( 𝑥𝐴𝑦𝐵 ) → ¬ 𝜑 ) )
6 ralnex2 ( ∀ 𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ¬ ∃ 𝑥𝐴𝑦𝐵 𝜑 )
7 6 con2bii ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ↔ ¬ ∀ 𝑥𝐴𝑦𝐵 ¬ 𝜑 )
8 3 5 7 3bitr4ri ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∃ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) )