Step |
Hyp |
Ref |
Expression |
1 |
|
r2exlem.1 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ¬ 𝜑 ) ) |
2 |
|
exnal |
⊢ ( ∃ 𝑥 ¬ ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ¬ 𝜑 ) ↔ ¬ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ¬ 𝜑 ) ) |
3 |
2 1
|
xchbinxr |
⊢ ( ∃ 𝑥 ¬ ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ¬ 𝜑 ) ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ) |
4 |
|
exnalimn |
⊢ ( ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ↔ ¬ ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ¬ 𝜑 ) ) |
5 |
4
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ↔ ∃ 𝑥 ¬ ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ¬ 𝜑 ) ) |
6 |
|
ralnex2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) |
7 |
6
|
con2bii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ) |
8 |
3 5 7
|
3bitr4ri |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ) |