Step |
Hyp |
Ref |
Expression |
1 |
|
r2al |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ∀ 𝑧 ∈ 𝐶 𝜑 ) ) |
2 |
|
19.21v |
⊢ ( ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∈ 𝐶 → 𝜑 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ∀ 𝑧 ( 𝑧 ∈ 𝐶 → 𝜑 ) ) ) |
3 |
|
df-3an |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐶 ) ) |
4 |
3
|
imbi1i |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) → 𝜑 ) ↔ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐶 ) → 𝜑 ) ) |
5 |
|
impexp |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐶 ) → 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∈ 𝐶 → 𝜑 ) ) ) |
6 |
4 5
|
bitri |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) → 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∈ 𝐶 → 𝜑 ) ) ) |
7 |
6
|
albii |
⊢ ( ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) → 𝜑 ) ↔ ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∈ 𝐶 → 𝜑 ) ) ) |
8 |
|
df-ral |
⊢ ( ∀ 𝑧 ∈ 𝐶 𝜑 ↔ ∀ 𝑧 ( 𝑧 ∈ 𝐶 → 𝜑 ) ) |
9 |
8
|
imbi2i |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ∀ 𝑧 ∈ 𝐶 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ∀ 𝑧 ( 𝑧 ∈ 𝐶 → 𝜑 ) ) ) |
10 |
2 7 9
|
3bitr4ri |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ∀ 𝑧 ∈ 𝐶 𝜑 ) ↔ ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) → 𝜑 ) ) |
11 |
10
|
2albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ∀ 𝑧 ∈ 𝐶 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) → 𝜑 ) ) |
12 |
1 11
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) → 𝜑 ) ) |