Metamath Proof Explorer


Theorem raaan

Description: Rearrange restricted quantifiers. (Contributed by NM, 26-Oct-2010)

Ref Expression
Hypotheses raaan.1 𝑦 𝜑
raaan.2 𝑥 𝜓
Assertion raaan ( ∀ 𝑥𝐴𝑦𝐴 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑦𝐴 𝜓 ) )

Proof

Step Hyp Ref Expression
1 raaan.1 𝑦 𝜑
2 raaan.2 𝑥 𝜓
3 rzal ( 𝐴 = ∅ → ∀ 𝑥𝐴𝑦𝐴 ( 𝜑𝜓 ) )
4 rzal ( 𝐴 = ∅ → ∀ 𝑥𝐴 𝜑 )
5 rzal ( 𝐴 = ∅ → ∀ 𝑦𝐴 𝜓 )
6 pm5.1 ( ( ∀ 𝑥𝐴𝑦𝐴 ( 𝜑𝜓 ) ∧ ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑦𝐴 𝜓 ) ) → ( ∀ 𝑥𝐴𝑦𝐴 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑦𝐴 𝜓 ) ) )
7 3 4 5 6 syl12anc ( 𝐴 = ∅ → ( ∀ 𝑥𝐴𝑦𝐴 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑦𝐴 𝜓 ) ) )
8 1 r19.28z ( 𝐴 ≠ ∅ → ( ∀ 𝑦𝐴 ( 𝜑𝜓 ) ↔ ( 𝜑 ∧ ∀ 𝑦𝐴 𝜓 ) ) )
9 8 ralbidv ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴𝑦𝐴 ( 𝜑𝜓 ) ↔ ∀ 𝑥𝐴 ( 𝜑 ∧ ∀ 𝑦𝐴 𝜓 ) ) )
10 nfcv 𝑥 𝐴
11 10 2 nfralw 𝑥𝑦𝐴 𝜓
12 11 r19.27z ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴 ( 𝜑 ∧ ∀ 𝑦𝐴 𝜓 ) ↔ ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑦𝐴 𝜓 ) ) )
13 9 12 bitrd ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴𝑦𝐴 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑦𝐴 𝜓 ) ) )
14 7 13 pm2.61ine ( ∀ 𝑥𝐴𝑦𝐴 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑦𝐴 𝜓 ) )