Step |
Hyp |
Ref |
Expression |
1 |
|
raaan2.1 |
⊢ Ⅎ 𝑦 𝜑 |
2 |
|
raaan2.2 |
⊢ Ⅎ 𝑥 𝜓 |
3 |
|
dfbi3 |
⊢ ( ( 𝐴 = ∅ ↔ 𝐵 = ∅ ) ↔ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ∨ ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) ) |
4 |
|
rzal |
⊢ ( 𝐴 = ∅ → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ) |
6 |
|
rzal |
⊢ ( 𝐴 = ∅ → ∀ 𝑥 ∈ 𝐴 𝜑 ) |
7 |
6
|
adantr |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ∀ 𝑥 ∈ 𝐴 𝜑 ) |
8 |
|
rzal |
⊢ ( 𝐵 = ∅ → ∀ 𝑦 ∈ 𝐵 𝜓 ) |
9 |
8
|
adantl |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ∀ 𝑦 ∈ 𝐵 𝜓 ) |
10 |
|
pm5.1 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) ) |
11 |
5 7 9 10
|
syl12anc |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) ) |
12 |
|
df-ne |
⊢ ( 𝐵 ≠ ∅ ↔ ¬ 𝐵 = ∅ ) |
13 |
1
|
r19.28z |
⊢ ( 𝐵 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) ) |
14 |
13
|
ralbidv |
⊢ ( 𝐵 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) ) |
15 |
12 14
|
sylbir |
⊢ ( ¬ 𝐵 = ∅ → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) ) |
16 |
|
df-ne |
⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) |
17 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐵 |
18 |
17 2
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ 𝐵 𝜓 |
19 |
18
|
r19.27z |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) ) |
20 |
16 19
|
sylbir |
⊢ ( ¬ 𝐴 = ∅ → ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) ) |
21 |
15 20
|
sylan9bbr |
⊢ ( ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) ) |
22 |
11 21
|
jaoi |
⊢ ( ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ∨ ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) ) |
23 |
3 22
|
sylbi |
⊢ ( ( 𝐴 = ∅ ↔ 𝐵 = ∅ ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) ) |