Metamath Proof Explorer


Theorem raaanv

Description: Rearrange restricted quantifiers. (Contributed by NM, 11-Mar-1997)

Ref Expression
Assertion raaanv ( ∀ 𝑥𝐴𝑦𝐴 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑦𝐴 𝜓 ) )

Proof

Step Hyp Ref Expression
1 rzal ( 𝐴 = ∅ → ∀ 𝑥𝐴𝑦𝐴 ( 𝜑𝜓 ) )
2 rzal ( 𝐴 = ∅ → ∀ 𝑥𝐴 𝜑 )
3 rzal ( 𝐴 = ∅ → ∀ 𝑦𝐴 𝜓 )
4 pm5.1 ( ( ∀ 𝑥𝐴𝑦𝐴 ( 𝜑𝜓 ) ∧ ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑦𝐴 𝜓 ) ) → ( ∀ 𝑥𝐴𝑦𝐴 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑦𝐴 𝜓 ) ) )
5 1 2 3 4 syl12anc ( 𝐴 = ∅ → ( ∀ 𝑥𝐴𝑦𝐴 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑦𝐴 𝜓 ) ) )
6 r19.28zv ( 𝐴 ≠ ∅ → ( ∀ 𝑦𝐴 ( 𝜑𝜓 ) ↔ ( 𝜑 ∧ ∀ 𝑦𝐴 𝜓 ) ) )
7 6 ralbidv ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴𝑦𝐴 ( 𝜑𝜓 ) ↔ ∀ 𝑥𝐴 ( 𝜑 ∧ ∀ 𝑦𝐴 𝜓 ) ) )
8 r19.27zv ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴 ( 𝜑 ∧ ∀ 𝑦𝐴 𝜓 ) ↔ ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑦𝐴 𝜓 ) ) )
9 7 8 bitrd ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴𝑦𝐴 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑦𝐴 𝜓 ) ) )
10 5 9 pm2.61ine ( ∀ 𝑥𝐴𝑦𝐴 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑦𝐴 𝜓 ) )