Step |
Hyp |
Ref |
Expression |
1 |
|
rzal |
⊢ ( 𝐴 = ∅ → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) |
2 |
|
rzal |
⊢ ( 𝐴 = ∅ → ∀ 𝑥 ∈ 𝐴 𝜑 ) |
3 |
|
rzal |
⊢ ( 𝐴 = ∅ → ∀ 𝑦 ∈ 𝐴 𝜓 ) |
4 |
|
pm5.1 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) ) ) |
5 |
1 2 3 4
|
syl12anc |
⊢ ( 𝐴 = ∅ → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) ) ) |
6 |
|
r19.28zv |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) ) ) |
7 |
6
|
ralbidv |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) ) ) |
8 |
|
r19.27zv |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) ) ) |
9 |
7 8
|
bitrd |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) ) ) |
10 |
5 9
|
pm2.61ine |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) ) |