Metamath Proof Explorer


Theorem rabab

Description: A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004) (Proof shortened by Andrew Salmon, 8-Jun-2011)

Ref Expression
Assertion rabab { 𝑥 ∈ V ∣ 𝜑 } = { 𝑥𝜑 }

Proof

Step Hyp Ref Expression
1 df-rab { 𝑥 ∈ V ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ V ∧ 𝜑 ) }
2 vex 𝑥 ∈ V
3 2 biantrur ( 𝜑 ↔ ( 𝑥 ∈ V ∧ 𝜑 ) )
4 3 abbii { 𝑥𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ V ∧ 𝜑 ) }
5 1 4 eqtr4i { 𝑥 ∈ V ∣ 𝜑 } = { 𝑥𝜑 }