| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abbib | ⊢ ( { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜓 ) }  =  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜒 ) }  ↔  ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜓 )  ↔  ( 𝑥  ∈  𝐴  ∧  𝜒 ) ) ) | 
						
							| 2 |  | df-rab | ⊢ { 𝑥  ∈  𝐴  ∣  𝜓 }  =  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜓 ) } | 
						
							| 3 |  | df-rab | ⊢ { 𝑥  ∈  𝐴  ∣  𝜒 }  =  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜒 ) } | 
						
							| 4 | 2 3 | eqeq12i | ⊢ ( { 𝑥  ∈  𝐴  ∣  𝜓 }  =  { 𝑥  ∈  𝐴  ∣  𝜒 }  ↔  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜓 ) }  =  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜒 ) } ) | 
						
							| 5 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝜓  ↔  𝜒 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ( 𝜓  ↔  𝜒 ) ) ) | 
						
							| 6 |  | pm5.32 | ⊢ ( ( 𝑥  ∈  𝐴  →  ( 𝜓  ↔  𝜒 ) )  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝜓 )  ↔  ( 𝑥  ∈  𝐴  ∧  𝜒 ) ) ) | 
						
							| 7 | 6 | albii | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ( 𝜓  ↔  𝜒 ) )  ↔  ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜓 )  ↔  ( 𝑥  ∈  𝐴  ∧  𝜒 ) ) ) | 
						
							| 8 | 5 7 | bitri | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝜓  ↔  𝜒 )  ↔  ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜓 )  ↔  ( 𝑥  ∈  𝐴  ∧  𝜒 ) ) ) | 
						
							| 9 | 1 4 8 | 3bitr4ri | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝜓  ↔  𝜒 )  ↔  { 𝑥  ∈  𝐴  ∣  𝜓 }  =  { 𝑥  ∈  𝐴  ∣  𝜒 } ) |