Step |
Hyp |
Ref |
Expression |
1 |
|
abbib |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) } ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
2 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } |
3 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜒 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) } |
4 |
2 3
|
eqeq12i |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐴 ∣ 𝜒 } ↔ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) } ) |
5 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝜒 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) |
6 |
|
pm5.32 |
⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
7 |
6
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
8 |
5 7
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝜒 ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
9 |
1 4 8
|
3bitr4ri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝜒 ) ↔ { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) |