Metamath Proof Explorer


Theorem rabbi

Description: Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbii . (Contributed by NM, 25-Nov-2013)

Ref Expression
Assertion rabbi ( ∀ 𝑥𝐴 ( 𝜓𝜒 ) ↔ { 𝑥𝐴𝜓 } = { 𝑥𝐴𝜒 } )

Proof

Step Hyp Ref Expression
1 abbib ( { 𝑥 ∣ ( 𝑥𝐴𝜓 ) } = { 𝑥 ∣ ( 𝑥𝐴𝜒 ) } ↔ ∀ 𝑥 ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐴𝜒 ) ) )
2 df-rab { 𝑥𝐴𝜓 } = { 𝑥 ∣ ( 𝑥𝐴𝜓 ) }
3 df-rab { 𝑥𝐴𝜒 } = { 𝑥 ∣ ( 𝑥𝐴𝜒 ) }
4 2 3 eqeq12i ( { 𝑥𝐴𝜓 } = { 𝑥𝐴𝜒 } ↔ { 𝑥 ∣ ( 𝑥𝐴𝜓 ) } = { 𝑥 ∣ ( 𝑥𝐴𝜒 ) } )
5 df-ral ( ∀ 𝑥𝐴 ( 𝜓𝜒 ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ( 𝜓𝜒 ) ) )
6 pm5.32 ( ( 𝑥𝐴 → ( 𝜓𝜒 ) ) ↔ ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐴𝜒 ) ) )
7 6 albii ( ∀ 𝑥 ( 𝑥𝐴 → ( 𝜓𝜒 ) ) ↔ ∀ 𝑥 ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐴𝜒 ) ) )
8 5 7 bitri ( ∀ 𝑥𝐴 ( 𝜓𝜒 ) ↔ ∀ 𝑥 ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐴𝜒 ) ) )
9 1 4 8 3bitr4ri ( ∀ 𝑥𝐴 ( 𝜓𝜒 ) ↔ { 𝑥𝐴𝜓 } = { 𝑥𝐴𝜒 } )