Metamath Proof Explorer


Theorem rabbi

Description: Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbidva . (Contributed by NM, 25-Nov-2013)

Ref Expression
Assertion rabbi ( ∀ 𝑥𝐴 ( 𝜓𝜒 ) ↔ { 𝑥𝐴𝜓 } = { 𝑥𝐴𝜒 } )

Proof

Step Hyp Ref Expression
1 abbi ( ∀ 𝑥 ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐴𝜒 ) ) ↔ { 𝑥 ∣ ( 𝑥𝐴𝜓 ) } = { 𝑥 ∣ ( 𝑥𝐴𝜒 ) } )
2 df-ral ( ∀ 𝑥𝐴 ( 𝜓𝜒 ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ( 𝜓𝜒 ) ) )
3 pm5.32 ( ( 𝑥𝐴 → ( 𝜓𝜒 ) ) ↔ ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐴𝜒 ) ) )
4 3 albii ( ∀ 𝑥 ( 𝑥𝐴 → ( 𝜓𝜒 ) ) ↔ ∀ 𝑥 ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐴𝜒 ) ) )
5 2 4 bitri ( ∀ 𝑥𝐴 ( 𝜓𝜒 ) ↔ ∀ 𝑥 ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐴𝜒 ) ) )
6 df-rab { 𝑥𝐴𝜓 } = { 𝑥 ∣ ( 𝑥𝐴𝜓 ) }
7 df-rab { 𝑥𝐴𝜒 } = { 𝑥 ∣ ( 𝑥𝐴𝜒 ) }
8 6 7 eqeq12i ( { 𝑥𝐴𝜓 } = { 𝑥𝐴𝜒 } ↔ { 𝑥 ∣ ( 𝑥𝐴𝜓 ) } = { 𝑥 ∣ ( 𝑥𝐴𝜒 ) } )
9 1 5 8 3bitr4i ( ∀ 𝑥𝐴 ( 𝜓𝜒 ) ↔ { 𝑥𝐴𝜓 } = { 𝑥𝐴𝜒 } )