Description: Deduction from a wff to a restricted class abstraction. (Contributed by NM, 14-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rabbi2dva.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 ↔ 𝜓 ) ) | |
| Assertion | rabbi2dva | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbi2dva.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 ↔ 𝜓 ) ) | |
| 2 | dfin5 | ⊢ ( 𝐴 ∩ 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵 } | |
| 3 | 1 | rabbidva | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵 } = { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
| 4 | 2 3 | eqtrid | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |