Metamath Proof Explorer


Theorem rabbida2

Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses rabbida2.1 𝑥 𝜑
rabbida2.2 ( 𝜑𝐴 = 𝐵 )
rabbida2.3 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion rabbida2 ( 𝜑 → { 𝑥𝐴𝜓 } = { 𝑥𝐵𝜒 } )

Proof

Step Hyp Ref Expression
1 rabbida2.1 𝑥 𝜑
2 rabbida2.2 ( 𝜑𝐴 = 𝐵 )
3 rabbida2.3 ( 𝜑 → ( 𝜓𝜒 ) )
4 2 eleq2d ( 𝜑 → ( 𝑥𝐴𝑥𝐵 ) )
5 4 3 anbi12d ( 𝜑 → ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐵𝜒 ) ) )
6 1 5 abbid ( 𝜑 → { 𝑥 ∣ ( 𝑥𝐴𝜓 ) } = { 𝑥 ∣ ( 𝑥𝐵𝜒 ) } )
7 df-rab { 𝑥𝐴𝜓 } = { 𝑥 ∣ ( 𝑥𝐴𝜓 ) }
8 df-rab { 𝑥𝐵𝜒 } = { 𝑥 ∣ ( 𝑥𝐵𝜒 ) }
9 6 7 8 3eqtr4g ( 𝜑 → { 𝑥𝐴𝜓 } = { 𝑥𝐵𝜒 } )