Metamath Proof Explorer


Theorem rabbida3

Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses rabbida3.1 𝑥 𝜑
rabbida3.2 ( 𝜑 → ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐵𝜒 ) ) )
Assertion rabbida3 ( 𝜑 → { 𝑥𝐴𝜓 } = { 𝑥𝐵𝜒 } )

Proof

Step Hyp Ref Expression
1 rabbida3.1 𝑥 𝜑
2 rabbida3.2 ( 𝜑 → ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐵𝜒 ) ) )
3 1 2 abbid ( 𝜑 → { 𝑥 ∣ ( 𝑥𝐴𝜓 ) } = { 𝑥 ∣ ( 𝑥𝐵𝜒 ) } )
4 df-rab { 𝑥𝐴𝜓 } = { 𝑥 ∣ ( 𝑥𝐴𝜓 ) }
5 df-rab { 𝑥𝐵𝜒 } = { 𝑥 ∣ ( 𝑥𝐵𝜒 ) }
6 3 4 5 3eqtr4g ( 𝜑 → { 𝑥𝐴𝜓 } = { 𝑥𝐵𝜒 } )