Description: Obsolete version of rabbida as of 14-Mar-2025. (Contributed by BJ, 27-Apr-2019) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabbidaOLD.n | ⊢ Ⅎ 𝑥 𝜑 | |
| rabbidaOLD.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | rabbidaOLD | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbidaOLD.n | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | rabbidaOLD.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | 2 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) |
| 4 | 1 3 | ralrimi | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝜒 ) ) |
| 5 | rabbi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝜒 ) ↔ { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) | |
| 6 | 4 5 | sylib | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) |