Description: Obsolete proof of rabbidva as of 4-Dec-2023. (Contributed by NM, 28-Nov-2003) (New usage is discouraged.) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rabbidva.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
Assertion | rabbidvaOLD | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbidva.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
2 | 1 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝜒 ) ) |
3 | rabbi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝜒 ) ↔ { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) | |
4 | 2 3 | sylib | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) |