Description: Equivalent formulas yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rabbiia.1 | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
Assertion | rabbiia | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∈ 𝐴 ∣ 𝜓 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbiia.1 | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
2 | 1 | pm5.32i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
3 | 2 | abbii | ⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } |
4 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
5 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } | |
6 | 3 4 5 | 3eqtr4i | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∈ 𝐴 ∣ 𝜓 } |