Metamath Proof Explorer


Theorem rabbiia

Description: Equivalent formulas yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999) (Proof shortened by Wolf Lammen, 12-Jan-2025)

Ref Expression
Hypothesis rabbiia.1 ( 𝑥𝐴 → ( 𝜑𝜓 ) )
Assertion rabbiia { 𝑥𝐴𝜑 } = { 𝑥𝐴𝜓 }

Proof

Step Hyp Ref Expression
1 rabbiia.1 ( 𝑥𝐴 → ( 𝜑𝜓 ) )
2 1 pm5.32i ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑥𝐴𝜓 ) )
3 2 rabbia2 { 𝑥𝐴𝜑 } = { 𝑥𝐴𝜓 }