Metamath Proof Explorer
Description: A restricted class abstraction is an element of the power set of its
restricting set. (Contributed by AV, 9-Oct-2023)
|
|
Ref |
Expression |
|
Assertion |
rabelpw |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∈ 𝒫 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 |
2 |
|
elpw2g |
⊢ ( 𝐴 ∈ 𝑉 → ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∈ 𝒫 𝐴 ↔ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 ) ) |
3 |
1 2
|
mpbiri |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∈ 𝒫 𝐴 ) |