Metamath Proof Explorer


Theorem rabelpw

Description: A restricted class abstraction is an element of the power set of its restricting set. (Contributed by AV, 9-Oct-2023)

Ref Expression
Assertion rabelpw ( 𝐴𝑉 → { 𝑥𝐴𝜑 } ∈ 𝒫 𝐴 )

Proof

Step Hyp Ref Expression
1 ssrab2 { 𝑥𝐴𝜑 } ⊆ 𝐴
2 elpw2g ( 𝐴𝑉 → ( { 𝑥𝐴𝜑 } ∈ 𝒫 𝐴 ↔ { 𝑥𝐴𝜑 } ⊆ 𝐴 ) )
3 1 2 mpbiri ( 𝐴𝑉 → { 𝑥𝐴𝜑 } ∈ 𝒫 𝐴 )