Metamath Proof Explorer
		
		
		
		Description:  Equality theorem for restricted class abstractions.  (Contributed by NM, 15-Oct-2003)  Avoid ax-10 , ax-11 , ax-12 .  (Revised by GG, 20-Aug-2023)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | rabeq | ⊢  ( 𝐴  =  𝐵  →  { 𝑥  ∈  𝐴  ∣  𝜑 }  =  { 𝑥  ∈  𝐵  ∣  𝜑 } ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq2 | ⊢ ( 𝐴  =  𝐵  →  ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  𝐵 ) ) | 
						
							| 2 | 1 | anbi1d | ⊢ ( 𝐴  =  𝐵  →  ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  ↔  ( 𝑥  ∈  𝐵  ∧  𝜑 ) ) ) | 
						
							| 3 | 2 | rabbidva2 | ⊢ ( 𝐴  =  𝐵  →  { 𝑥  ∈  𝐴  ∣  𝜑 }  =  { 𝑥  ∈  𝐵  ∣  𝜑 } ) |