Metamath Proof Explorer


Theorem rabeq0

Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010) (Revised by BJ, 16-Jul-2021)

Ref Expression
Assertion rabeq0 ( { 𝑥𝐴𝜑 } = ∅ ↔ ∀ 𝑥𝐴 ¬ 𝜑 )

Proof

Step Hyp Ref Expression
1 ab0 ( { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } = ∅ ↔ ∀ 𝑥 ¬ ( 𝑥𝐴𝜑 ) )
2 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
3 2 eqeq1i ( { 𝑥𝐴𝜑 } = ∅ ↔ { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } = ∅ )
4 raln ( ∀ 𝑥𝐴 ¬ 𝜑 ↔ ∀ 𝑥 ¬ ( 𝑥𝐴𝜑 ) )
5 1 3 4 3bitr4i ( { 𝑥𝐴𝜑 } = ∅ ↔ ∀ 𝑥𝐴 ¬ 𝜑 )