Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010) (Revised by BJ, 16-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | rabeq0 | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ab0 | ⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = ∅ ↔ ∀ 𝑥 ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
2 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
3 | 2 | eqeq1i | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } = ∅ ↔ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = ∅ ) |
4 | raln | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀ 𝑥 ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
5 | 1 3 4 | 3bitr4i | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ) |