Metamath Proof Explorer


Theorem rabeq0w

Description: Condition for a restricted class abstraction to be empty. Version of rabeq0 using implicit substitution, which does not require ax-10 , ax-11 , ax-12 , but requires ax-8 . (Contributed by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypothesis rabeq0w.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion rabeq0w ( { 𝑥𝐴𝜑 } = ∅ ↔ ∀ 𝑦𝐴 ¬ 𝜓 )

Proof

Step Hyp Ref Expression
1 rabeq0w.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
3 2 1 anbi12d ( 𝑥 = 𝑦 → ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑦𝐴𝜓 ) ) )
4 3 ab0w ( { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } = ∅ ↔ ∀ 𝑦 ¬ ( 𝑦𝐴𝜓 ) )
5 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
6 5 eqeq1i ( { 𝑥𝐴𝜑 } = ∅ ↔ { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } = ∅ )
7 raln ( ∀ 𝑦𝐴 ¬ 𝜓 ↔ ∀ 𝑦 ¬ ( 𝑦𝐴𝜓 ) )
8 4 6 7 3bitr4i ( { 𝑥𝐴𝜑 } = ∅ ↔ ∀ 𝑦𝐴 ¬ 𝜓 )