Description: Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017) Remove DV conditions. (Revised by GG, 1-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rabeqbidva.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
rabeqbidva.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
Assertion | rabeqbidva | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐵 ∣ 𝜒 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqbidva.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
2 | rabeqbidva.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
3 | 2 | rabbidva | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) |
4 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
5 | 4 | anbi1d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) ) |
6 | 5 | rabbidva2 | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜒 } = { 𝑥 ∈ 𝐵 ∣ 𝜒 } ) |
7 | 3 6 | eqtrd | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐵 ∣ 𝜒 } ) |