Metamath Proof Explorer


Theorem rabeqbidva

Description: Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Hypotheses rabeqbidva.1 ( 𝜑𝐴 = 𝐵 )
rabeqbidva.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
Assertion rabeqbidva ( 𝜑 → { 𝑥𝐴𝜓 } = { 𝑥𝐵𝜒 } )

Proof

Step Hyp Ref Expression
1 rabeqbidva.1 ( 𝜑𝐴 = 𝐵 )
2 rabeqbidva.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
3 2 rabbidva ( 𝜑 → { 𝑥𝐴𝜓 } = { 𝑥𝐴𝜒 } )
4 1 rabeqdv ( 𝜑 → { 𝑥𝐴𝜒 } = { 𝑥𝐵𝜒 } )
5 3 4 eqtrd ( 𝜑 → { 𝑥𝐴𝜓 } = { 𝑥𝐵𝜒 } )