Metamath Proof Explorer


Theorem rabeqc

Description: A restricted class abstraction equals the restricting class if its condition follows from the membership of the free setvar variable in the restricting class. (Contributed by AV, 20-Apr-2022)

Ref Expression
Hypothesis rabeqc.1 ( 𝑥𝐴𝜑 )
Assertion rabeqc { 𝑥𝐴𝜑 } = 𝐴

Proof

Step Hyp Ref Expression
1 rabeqc.1 ( 𝑥𝐴𝜑 )
2 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
3 abeq1 ( { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } = 𝐴 ↔ ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) ↔ 𝑥𝐴 ) )
4 1 pm4.71i ( 𝑥𝐴 ↔ ( 𝑥𝐴𝜑 ) )
5 4 bicomi ( ( 𝑥𝐴𝜑 ) ↔ 𝑥𝐴 )
6 3 5 mpgbir { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } = 𝐴
7 2 6 eqtri { 𝑥𝐴𝜑 } = 𝐴