Metamath Proof Explorer


Theorem rabeqcda

Description: When ps is always true in a context, a restricted class abstraction is equal to the restricting class. Deduction form of rabeqc . (Contributed by Steven Nguyen, 7-Jun-2023)

Ref Expression
Hypothesis rabeqcda.1 ( ( 𝜑𝑥𝐴 ) → 𝜓 )
Assertion rabeqcda ( 𝜑 → { 𝑥𝐴𝜓 } = 𝐴 )

Proof

Step Hyp Ref Expression
1 rabeqcda.1 ( ( 𝜑𝑥𝐴 ) → 𝜓 )
2 df-rab { 𝑥𝐴𝜓 } = { 𝑥 ∣ ( 𝑥𝐴𝜓 ) }
3 1 ex ( 𝜑 → ( 𝑥𝐴𝜓 ) )
4 3 pm4.71d ( 𝜑 → ( 𝑥𝐴 ↔ ( 𝑥𝐴𝜓 ) ) )
5 4 eqabdv ( 𝜑𝐴 = { 𝑥 ∣ ( 𝑥𝐴𝜓 ) } )
6 2 5 eqtr4id ( 𝜑 → { 𝑥𝐴𝜓 } = 𝐴 )