Metamath Proof Explorer


Theorem rabeqf

Description: Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004)

Ref Expression
Hypotheses rabeqf.1 𝑥 𝐴
rabeqf.2 𝑥 𝐵
Assertion rabeqf ( 𝐴 = 𝐵 → { 𝑥𝐴𝜑 } = { 𝑥𝐵𝜑 } )

Proof

Step Hyp Ref Expression
1 rabeqf.1 𝑥 𝐴
2 rabeqf.2 𝑥 𝐵
3 1 2 nfeq 𝑥 𝐴 = 𝐵
4 eleq2 ( 𝐴 = 𝐵 → ( 𝑥𝐴𝑥𝐵 ) )
5 4 anbi1d ( 𝐴 = 𝐵 → ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑥𝐵𝜑 ) ) )
6 3 5 abbid ( 𝐴 = 𝐵 → { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } = { 𝑥 ∣ ( 𝑥𝐵𝜑 ) } )
7 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
8 df-rab { 𝑥𝐵𝜑 } = { 𝑥 ∣ ( 𝑥𝐵𝜑 ) }
9 6 7 8 3eqtr4g ( 𝐴 = 𝐵 → { 𝑥𝐴𝜑 } = { 𝑥𝐵𝜑 } )