Metamath Proof Explorer


Theorem rabeqsn

Description: Conditions for a restricted class abstraction to be a singleton. (Contributed by AV, 18-Apr-2019) (Proof shortened by AV, 26-Aug-2022)

Ref Expression
Assertion rabeqsn ( { 𝑥𝑉𝜑 } = { 𝑋 } ↔ ∀ 𝑥 ( ( 𝑥𝑉𝜑 ) ↔ 𝑥 = 𝑋 ) )

Proof

Step Hyp Ref Expression
1 df-rab { 𝑥𝑉𝜑 } = { 𝑥 ∣ ( 𝑥𝑉𝜑 ) }
2 1 eqeq1i ( { 𝑥𝑉𝜑 } = { 𝑋 } ↔ { 𝑥 ∣ ( 𝑥𝑉𝜑 ) } = { 𝑋 } )
3 absn ( { 𝑥 ∣ ( 𝑥𝑉𝜑 ) } = { 𝑋 } ↔ ∀ 𝑥 ( ( 𝑥𝑉𝜑 ) ↔ 𝑥 = 𝑋 ) )
4 2 3 bitri ( { 𝑥𝑉𝜑 } = { 𝑋 } ↔ ∀ 𝑥 ( ( 𝑥𝑉𝜑 ) ↔ 𝑥 = 𝑋 ) )