Description: Conditions for a restricted class abstraction to be a singleton. (Contributed by AV, 18-Apr-2019) (Proof shortened by AV, 26-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabeqsn | ⊢ ( { 𝑥 ∈ 𝑉 ∣ 𝜑 } = { 𝑋 } ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) ↔ 𝑥 = 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | ⊢ { 𝑥 ∈ 𝑉 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) } | |
| 2 | 1 | eqeq1i | ⊢ ( { 𝑥 ∈ 𝑉 ∣ 𝜑 } = { 𝑋 } ↔ { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) } = { 𝑋 } ) |
| 3 | absn | ⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) } = { 𝑋 } ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) ↔ 𝑥 = 𝑋 ) ) | |
| 4 | 2 3 | bitri | ⊢ ( { 𝑥 ∈ 𝑉 ∣ 𝜑 } = { 𝑋 } ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) ↔ 𝑥 = 𝑋 ) ) |