| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rabeqsnd.0 | ⊢ ( 𝑥  =  𝐵  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 2 |  | rabeqsnd.1 | ⊢ ( 𝜑  →  𝐵  ∈  𝐴 ) | 
						
							| 3 |  | rabeqsnd.2 | ⊢ ( 𝜑  →  𝜒 ) | 
						
							| 4 |  | rabeqsnd.3 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝜓 )  →  𝑥  =  𝐵 ) | 
						
							| 5 | 4 | expl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ∧  𝜓 )  →  𝑥  =  𝐵 ) ) | 
						
							| 6 | 5 | alrimiv | ⊢ ( 𝜑  →  ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜓 )  →  𝑥  =  𝐵 ) ) | 
						
							| 7 | 2 3 | jca | ⊢ ( 𝜑  →  ( 𝐵  ∈  𝐴  ∧  𝜒 ) ) | 
						
							| 8 | 7 | a1d | ⊢ ( 𝜑  →  ( 𝑥  =  𝐵  →  ( 𝐵  ∈  𝐴  ∧  𝜒 ) ) ) | 
						
							| 9 | 8 | alrimiv | ⊢ ( 𝜑  →  ∀ 𝑥 ( 𝑥  =  𝐵  →  ( 𝐵  ∈  𝐴  ∧  𝜒 ) ) ) | 
						
							| 10 |  | eleq1 | ⊢ ( 𝑥  =  𝐵  →  ( 𝑥  ∈  𝐴  ↔  𝐵  ∈  𝐴 ) ) | 
						
							| 11 | 10 1 | anbi12d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝑥  ∈  𝐴  ∧  𝜓 )  ↔  ( 𝐵  ∈  𝐴  ∧  𝜒 ) ) ) | 
						
							| 12 | 11 | pm5.74i | ⊢ ( ( 𝑥  =  𝐵  →  ( 𝑥  ∈  𝐴  ∧  𝜓 ) )  ↔  ( 𝑥  =  𝐵  →  ( 𝐵  ∈  𝐴  ∧  𝜒 ) ) ) | 
						
							| 13 | 12 | albii | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝐵  →  ( 𝑥  ∈  𝐴  ∧  𝜓 ) )  ↔  ∀ 𝑥 ( 𝑥  =  𝐵  →  ( 𝐵  ∈  𝐴  ∧  𝜒 ) ) ) | 
						
							| 14 | 9 13 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑥 ( 𝑥  =  𝐵  →  ( 𝑥  ∈  𝐴  ∧  𝜓 ) ) ) | 
						
							| 15 | 6 14 | jca | ⊢ ( 𝜑  →  ( ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜓 )  →  𝑥  =  𝐵 )  ∧  ∀ 𝑥 ( 𝑥  =  𝐵  →  ( 𝑥  ∈  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 16 |  | albiim | ⊢ ( ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜓 )  ↔  𝑥  =  𝐵 )  ↔  ( ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜓 )  →  𝑥  =  𝐵 )  ∧  ∀ 𝑥 ( 𝑥  =  𝐵  →  ( 𝑥  ∈  𝐴  ∧  𝜓 ) ) ) ) | 
						
							| 17 | 15 16 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜓 )  ↔  𝑥  =  𝐵 ) ) | 
						
							| 18 |  | rabeqsn | ⊢ ( { 𝑥  ∈  𝐴  ∣  𝜓 }  =  { 𝐵 }  ↔  ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜓 )  ↔  𝑥  =  𝐵 ) ) | 
						
							| 19 | 17 18 | sylibr | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐴  ∣  𝜓 }  =  { 𝐵 } ) |