Metamath Proof Explorer


Theorem rabexd

Description: Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 . (Contributed by AV, 16-Jul-2019)

Ref Expression
Hypotheses rabexd.1 𝐵 = { 𝑥𝐴𝜓 }
rabexd.2 ( 𝜑𝐴𝑉 )
Assertion rabexd ( 𝜑𝐵 ∈ V )

Proof

Step Hyp Ref Expression
1 rabexd.1 𝐵 = { 𝑥𝐴𝜓 }
2 rabexd.2 ( 𝜑𝐴𝑉 )
3 rabexg ( 𝐴𝑉 → { 𝑥𝐴𝜓 } ∈ V )
4 2 3 syl ( 𝜑 → { 𝑥𝐴𝜓 } ∈ V )
5 1 4 eqeltrid ( 𝜑𝐵 ∈ V )